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Abstract 

Computerized composers of chess problems are very rare. Moreover, they produce 

neither impressive nor creative new mate problems. A previous model, called an Improver of 

Chess Problems (ICP) improved slightly the quality of 10 out of 36 (about 28%) known 2-

movers (problems in which White has to mate Black in two moves against any defense of 

Black). ICP was based on hill-climbing search and a quality function for evaluating the 

problems.  

Such a quality function can help to composers to achieve better problems with the 

computer help. The quality function was built using chess problems literature and consulting 

two international masters in chess composition. Comparing newly generated problem to the 

original problem using the values of both, we can see immediately which is better. 

Automating the process, we can do the whole process fully automatic.  

In this thesis, two improved models for 2-movers are described. The first is called Deep 

Improver of Chess Problems (DICP). This model uses an improved version of Bounded 

Depth First Search (BDFS) and an improved version of a quality function. The experiment 

we carried out on the ICP's database showed that the quality of 32 problems (about 89%) was 

improved. Moreover, DICP's improvements are better in their quality in comparison with 

those of ICP.  

The second model is called Chess Composer. It uses an ordered version of Depth First 

Iterative Deepening (DFID) and has the same quality function as in DICP. The results of the 

experiment we carried out on 100 known problems show that the quality of 97 of the 

problems (97%) was improved. Some of the improvements are rather impressive, considering 

that most of the tested problems were composed by very experienced composers.  

  



  

These new improved problems can be regarded as creative because they are better, and 

they are often not too similar to the original problems. Moreover, some of the improvements 

are meaningful and impressive from the viewpoint of chess composition. 

Finally, a general theoretical model, the k-move Chess Composer, is proposed. 

Practically, it uses the same algorithm as in Chess Composer for 2-movers. To detect 

whether or not a problem has a solution, Depth First Search (DFS) with pruning was used on 

AND/OR trees. A special metric has been built in purpose to improve solution trees of k-

movers (A solution tree is a tree developed for all possible moves of Black and the right 

responses of White). This metric can be used in a future evaluation function. 

All proposed models use a 64-bit board representation. In general, 64-bit board 

representation means a flexible structure for representation a board using 64-bit computer 

words.  This representation slightly improves the search speed. Experiments show that move 

generator of our composer is faster by about 25% than the move generator of professional 

programs that use only a 32-bit board representation. 

 

Keywords: Computer Chess Composition, Automatic Problems Construction and 

Improvement, DFID, 64-bit Board Representation 
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Chapter 1

1. Introduction 

Why computer chess composition? Why chess? The question "can a machine think?" 

has been asked by many researchers, e.g., Shannon (1950), Turing (1950, 1953), and 

McCarty (1997). To answer this question, all of them used chess as a model. Chess was 

chosen because it has simple definite rules, well understandable goals, and clear-cut 

problems. In addition, chess complexity is relatively high. These facts make chess a very 

useful instrument for researches in Artificial Intelligence. McCarty (1997) quotes the words 

of the Russian mathematician Alexander Kronrod: "Chess is the Drosophila of Artificial 

Intelligence", which means that chess is as fundamental for Artificial Intelligence as is the 

fruit fly, Drosophila, for genetics. 

Talking about computer chess, one may mean a situation where a computer plays 

against a human being or against another computer. Historically, this situation has been well 

studied. The most famous chess artificial player was IBM's Deep Blue. This machine is the 

only one known that defeated a world champion in a full match. The machine beat Garry 

Kasparov 3.5:2.5 in 1997 (Campbell et al. 2002, Schaeffer et al. 1997, Seirawan 1997). 

Nowadays top machines are stronger than Deep Blue, rather because of smarter algorithms 

than because of the wide use of processors (see last results of ICGA computer chess 

competition [il-2]). 

The sub-domain of chess problems composition might be even more appropriate for AI 

research because: (1) compared to chess, it is relatively an uninvestigated research domain, 

and (2) the branching factor in chess composition is about ten times higher than the 

branching factor in chess.  

- 8 - 



1.     INTRODUCTION  

Chess problems solving and composing are different from chess playing. Chess is a 

two-player game, while composing and solving chess problems are considered as a one 

player game.  

A chess problem can be viewed as an art work, while it is not true for most of played 

chess games. A chess problem usually contains one or more ideas that are called "themes". In 

our model, we would like to automatically create problems containing themes using a 

computer. Thus, following Shannon's thoughts, our question is: "Can a machine be an art 

creator?" This is the main contribution of the research to Artificial Intelligence. 

Chess problems have at least 700 years of history. Harley (1931), in his famous book 

about 2-movers (i.e., chess problems in which White has to mate Black in two moves against 

any defense of Black), brings as an example a 13th century composition (problem #1). 

However, modern chess problem composition started in the middle of the 19th century. Sam 

Loyd, the inventor of the famous 15-puzzle, was also one of the best chess problem- 

composers in the 19th century. Some of his compositions are presented in Harley (1931) and 

in Howard (1943). 

Since the Middle Ages lonely authors, the modern community of chess problem solvers 

and composers has grown. Searching for "chess problem" on Google (www.google.com), 

one will be surprised to find many different groups of interest in the majority of civilized 

countries.  

Modern chess problems are different from ancient chess problems. Modern problems 

are usually seen as art compositions rather than just chess puzzles.  To be a modern problem, 

it must have an artistic value.  

While almost every chess player has had experience as a problem solver, there are only 

a few composers of chess problems. To compose a problem is much harder for a human than 

to solve it.  

- 9 - 
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1.     INTRODUCTION  

The goal of this research is to build a model that will aid with composing new chess 

problems in a desired number of moves. Problems with a high artistic value are the one 

interesting to the community of modern chess problems composers and solvers. The models 

proposed in this research also answer the needs of modern chess composition. 

Harley (1931, 1944), Howard (1943), and Rice (1996) explained in their classic books 

the composing process from the viewpoint of human composers. For a human, composing a 

chess problem is much harder than solving it. For a computer, the same is true too. To solve a 

problem, a computer need just develop and check all possible variants to the desired depth. 

To compose a problem is not that simple. The new problem should be both legal according to 

chess composition rules and containing themes.  

In this thesis, as a starting point, various chess problems were collected from different 

chess composition books. Applying series of transformations, these problems were changed 

with the purpose of improving them in terms of themes. The results are impressive. In case of 

2-movers, 97% of problems were improved. Some of the improvements are regarded as 

impressive from the chess composition viewpoint. Our evaluation function is built mainly 

due to inventors of chess composition theory, Harley and Howard. Also, two chess experts 

were involved during the creating of the evaluation function. 

The thesis is organized as follows. Chapter 2 contains background and related research. 

Chapter 3 describes our proposed models. Chapter 4 presents experimental results and their 

analyses. Finally, chapter 5 contains conclusions and a discussion on future research. 
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Chapter 2
 

2. Background 

2.1. Chess and its Complexity 

2.1.1. Chess 

Chess rules are very simple and well-defined. Appendix A gives a full description of 

these rules, which belong to orthodox chess (i.e., chess with regular board, pieces, and rules). 

Orthodox chess playing is not the only chess-related domain. Fairy chess is a good example 

for a chess-related game, where some rules are changed. For example, a board may be cyclic 

or with restricted areas. There may be additional pieces. Rules may be different. For instance, 

White and Black may wish to cause the opposite side to mate their own king (self-playing).  

A Japanese game, Shogi, is an excellent example for a chess-like game with different 

rules. There are 81 squares on the board. There are additional pieces. Shogi's initial position 

is also different. Captured pieces may be added on the board by the capturing side. Other 

differences are described in Matsubara et al. (1997). 

2.1.2. The Complexity of Chess 

Shannon (1950) estimated the number of different legal chess positions to be about 

1043. Shannon reached his estimation considering the following number of combinations, 

( )
64

32 22
!

! (8!) ( !)× × 6
, which is roughly 4 63 1042. × . The explanation for this combinatorial 

value is as follows. There are 64 squares on the chessboard, 32 different pieces, 8 White 

- 11 - 



2.     BACKGROUND 

pawns, 8 Black pawns, 6 different groups of two identical pieces (2 rooks, 2 bishops and 2 

knights for both sides), and 4 groups of one piece each (king and queen for both sides) which 

do not affect on the denominator. 

This calculation takes into consideration all possible arrangements of the pieces on the 

board. However, there are positions which are not legal (e.g., two kings in neighboard 

squares, both kings are checked, etc.). Therefore, chess problemists and mathematicians 

(Nievergelt, 1977) estimate the number of different legal chess positions to be 1040. 

2.2. Classification of Chess Problems 

All chess problems can be classified into the following groups:  

Definition 1. A Chess problem is a puzzle set by a composer which is to be solved. A Chess 

problem, differently from crosswords puzzles, soduku, etc., has chess or chess-like rules. 

Definition 1.01 Orthodox chess problems are problems with rules of regular chess. 

Definition 1.02 Fairy chess problems are problems in which there are non-orthodox rules, 

non-orthodox pieces, and non-orthodox boards. (An orthodox chess problem can be viewed 

as a fairy chess problem without any non-orthodox extensions.) For instance, Trice (2004) 

describes 80-squares chess proposed in 1920 by then world champion, Kapablanka. Van 

Haeringen et al. (2003) introduce Superchess with a description of various kinds of chess-

like pieces. 

Definition 1.03  Near chess problems are problems based the use of chess pieces. The most 

famous examples are the Eight Queens� problem and the movement of a knight throughout 

the entire board. 

 

Another break down is by stipulations, i.e., what should the solver do: 

Definition 2.  
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2.     BACKGROUND 

Definition 2.01 Directmates are problems of type �mate in N moves�. This stipulation 

means that White starts and mates Black in N moves, assuming that both White and Black 

make their best moves. Such problems are called "2-movers", "3-movers", "4-movers", and, 

generally, "N-movers". 

Definition 2.02 Helpmates are problems of the form: "Black starts and helps White to gain 

a mate in N moves". 

Definition 2.03  Selfmates are problems of the form: "White's strategy is to force Black to 

mate him in N moves". 

Definition 2.04 Retrograde analysis problems are problems of the form: "Prove that a 

given problem can be achieved from the initial chess position".  

Definition 2.05 Studies are problems of the form: "White starts and reaches a winning or a 

stalemate position in N moves� 

There are some additional types of problems. However, the above five (2.01-2.05) are 

most common.  

The orthodox directmate chess problems in 2-, 3-, 4-, and 5- moves due to definitions 1, 

1.01, and 2.01 are the object of this research. This type of problems is one of the most 

popular both for solving and composing. Problems in 2-, and 3-moves were studied by chess 

composers (e.g., Harley (1931, 1944), Howard (1943)) very thoroughly. 

2.2.1. Rules of Orthodox Directmates 

Composition of chess problems has its specific rules. There are several criteria of 

quality and correctness for chess problems (see Harley 1931, 1944 and Rice 1996 for more 

details). Orthodox directmates must be legal. According to Howard (1943), Legality means: 

1) The position is legal according to the chess rules described in Section 2.1. 

- 13 - 



2.     BACKGROUND 

2) There are no more than 8 pawns, 2 knights, 2 bishops, 2 rooks, 1 queen and exactly 1 

king for each side. 

3) Bishops of one side are not allowed to be of the same square color. 

4) It must be proved that the problem can be developed from the initial position (Figure 9). 

Retrograde analysis is one of the ways to prove it. 

5) Castling and en-passant (see Appendix A) are legal unless it has been explicitly 

disallowed. Several kinds of problems implicitly ask to prove that castling or enpassant 

are legal. 

6) The first move of White, which is called the keymove, is unique. That is, if there is 

another move of White that forces another solution, then the problem is not legal. In such 

a case, the problem is called cooked. 

In addition, there are few requirements of quality: 

1) There should be just one unique way for White in every step of the solution. 

Theoretically, the problem is ideal if all lines of play are unique. However, if Black does 

a weak move, White is allowed to have more then one possible solution. In such a case, a 

problem is known to have duals if there are two lines of play, triples if there are three, 

and multiples if there are more. Duals, triples, and multiples are usually referred to as 

duals. Such duals decrease the quality of the problem. This can be avoided by 

rearranging of pieces placement or by adding a piece. There is a trade off and a composer 

usually allows duals which are forced in other lines of play (so-called minor duals). 

2) The number of the pieces on the board should be no less and no more than is needed for 

the theme(s) included in the problem. This kind of quality measure is called Economy of 

Piece or Material (Harley 1931). This approach is different from the old approach which 

assumed that more pieces on the board would make the solution harder. If there are 

- 14 - 



2.     BACKGROUND 

different choices for a White piece on a square, the weakest piece should be chosen. The 

opposite choice is taken for Black, i.e., the strongest piece should be placed. 

3) Key or keymove is the first move of White. A good key decreases White's options and 

increases Black's options. A good key is neither a check nor a piece capture. However, 

sometimes it is allowed. 

4) A Theme is a special important structure or a special way of solving a problem.  

5) The composed position must be new and original. Building global database is a way of 

checking whether the position is not unique. However, it is not enough, because minor 

changes in pieces, living similar ideas on the board, are also considered as plagiarism. 

2.2.2. Composition Themes 

Modern chess problems represent various themes. According to different composition 

books (Harley (1931, 1944), Howard (1943)), themes may be different and depend only on 

the fantasy of the composers or the editors of chess composition journals. Composition 

themes are patterns by which a composer may judge about the quality of the problem. The 

more such patterns can be recognized by a composer, the higher the quality of the problem is. 

There are thousands of such patterns. 

HaCohen-Kerner et al. (1999) built a composing model. Their model, called ICP, 

applied on several important themes in chess composition (see Appendix B) with the help of 

two international masters of chess composition.  

We started off with the same themes for our current research. However, a different 

approach was used. ICP defines themes observing given positions. The real themes are 

defined on the line of plays, from the given position to the mating positions. Therefore, ICP's 

definitions give just a direction of its heuristic function. The new definitions of the same 

- 15 - 



2.     BACKGROUND 

themes are more exact, because the whole lines of play are used to define themes. All 11 

themes used in this thesis for 2-movers are presented in Appendix C. 

2.3. Chess Problems and Computer Chess 

Programs 

There are several works on computer chess problems. Below we introduce different tools and 

methods for taking care of chess problems. 

2.3.1. Problem Solving 

Most computer programs dealing with chess problems are dedicated to problem 

solving.  The performance of such programs is described in Lindner (1985, 1989, 1991). He 

presents tools that, in his opinion, a chess problem-solver software should supply. Examples 

for such programs are  Leschemelle's "Problemist"  [il-3], Blom's "Alybadix" ("Metabadix") 

 [il-1], "Popeye" by Schnoebelen et al.  [il-5], and Nowakowski's "Chess Explorer" [il-6]. The 

main disadvantage in Lindner's papers is the lack of algorithms. 

Another problem solving program is VKSACH by Kotě�ovec (1996). Like other 

programs, VKSACH checks the correctness of problems. In addition, it composes problems 

by itself. However, its main concern is helpmates (definition 2.02). The author describes 

some sub-composition algorithms. 

When a simple brute force method is applied to problems in N-moves (N>5), it could 

take sometimes unpractical amount of time. Some authors use different methods to deal with 

this problem. Conspiracy numbers and proof numbers are two such methods.  

- 16 - 
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2.3.2. Conspiracy Numbers 

The term "Conspiracy numbers" references to a best-first search algorithm firstly 

proposed by McAllester (1988). Schaeffer (1990) implemented this method to different 

tactical chess problems. The idea of the method is to expand selectively terminal nodes 

considering the conspiracy number for each possible root value. A conspiracy number is a 

minimal number of terminal nodes ("leaves" in a sub-tree) that changing their values changes 

the root score (the initial position). The gain is that the algorithm searches deeper in those 

sub-trees that are more likely, probability-wise, to have a better solution and searches less in 

unlikely sub-trees. The algorithm is not limited by depth as alpha-beta. Its drawbacks are: (1) 

The possibility of sometimes searching to ridiculous depths in a "wrong" direction, (2) the 

algorithm does not guarantee to find the best solution, and (3) possible the memory 

explosion, because the algorithm must store all developed nodes with their numbers. 

2.3.3. Proof Numbers 

Proof numbers can be viewed as an implementation of conspiracy numbers for 

AND/OR trees. This idea was presented in various papers (Allis (1994), Allis et al. (1994), 

and Breuker et al. (1994)). AND/OR trees are special graphs, particularly trees, where every 

node is an AND-node or an OR-node. In the case of a game tree, White (or MAX) has OR 

nodes, while Black (or MIN) has AND nodes. The goal is to "prove" (resolve) the tree, i.e., 

to "solve" (evaluate) the root node, i.e., to find a mate solution. We intend to answer the 

question whether there is a mate. If there is a mate, then the tree is proved. Otherwise, the 

tree is disproved. Terminal nodes are "true", "false", and "unknown". A proof number is a 

number that for each node gives an answer to the questions "how many terminal nodes in the 

sub-tree must become true in order to prove the node" and "how many terminal nodes in the 
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sub-tree must become false in order to disprove the node". This selective best-first algorithm 

chooses the most-proving node (maximizing the "how many"s) to develop at each step. Seo's 

PN* (Seo et al. 2001) is an improvement of the proof numbers algorithm. 

2.4. Endgames  

In chess, the term "opening" means the start of the game. "Endgame" means the end of 

a game where just a few pieces are left on the board. Strong chess playing programs have 

special big databases for openings and endgames. The volume of the databases changes from 

programmer to another. Openings usually are written with the help of chess experts. Practical 

known endgame databases were built for endgames with three, four, five, and sometimes six 

pieces. These databases are used by many strong playing chess programs. 

There are 2 types of databases (sometimes known also as tablebases), characterized by 

distance to mate (DTM) and distance to conversion (DTC). In the first case (DTM), the 

shortest possible mate for each position is stored. In the second case (DTC), the shortest 

number of plies between each position and a "conversion" is stored. By conversion, a piece 

capturing, a pawn promotion, or a checkmate are considered. 

Thompson (1986, 1996) used distance to conversion (capturing a piece). It is hard to 

use this database in a chess engine when it is compressed (Heinz 1999). The actual result of 

Thomson's database is a set of four regular CDROMs (each of 640 Mbytes).  

Thompson, one of the originators of UNIX, proposed the idea of Retrograde Analysis 

(RA) for chess endgames. The idea is to select end positions (for example, mate positions) 

and go as far back as possible, selecting scores of all the positions on the way back 

(Thompson (1986, 1996)). 

Edwards' so-called tablebases use DTM (Heinz (1999)). Nalimov's tablebases are an 

improvement to Edwards' tablebase. The improvement is achieved by compression. 
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Nalimov's tablebases are considered better than Edward's because they are relatively small, 

i.e., about 7.5 GBytes instead of Edward's 30 GBytes. 

 Heinz (1999) explains why Edwards' so-called tablebases are better than Thompson's 

databases. Thompson's databases are not so easy to use in chess-playing programs and are 

relatively slow. Nalimov's tablebases are an improvement of Edwards' tablebases. They are 

known for their space efficiency and are in use as a standard in current chess playing 

programs. 

2.5. Composing of Chess and Chess-like Problems 

There had been limited research on computer chess composing. Some methods are 

shown below. Some methods in chess-like games are presented as well. 

2.5.1.  Composition of Two-Move Mate Problems 

The concept �high-quality chess mate problem� is hard to define, especially for an 

automatic program. It is not simple to define concepts, such as beauty, originality, 

uniqueness of the solution, and difficulty of solving process. Therefore, a major part of the 

knowledge needed for evaluating the quality of chess problems, in general, and of two-move 

problems, in particular, was defined in a model called an Improver of Chess Problems (ICP) 

(HaCohen-Kerner et al. 1999). This knowledge was collected with the help of two 

international masters in chess problems composition. It includes definitions of themes (Table 

9 in Appendix B), bonuses (Table 10 in Appendix B), and penalties (Table 11 in Appendix 

B) in the domain of chess composition for two-move problems.  

ICP tries to improve the quality of a given problem by a series of special 

transformations. These transformations are divided into four main classes:  
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1) Simple transformations � deletions and additions of a piece on the board. The idea 

behind deletions is to express the same ideas using the smallest number of pieces possible. 

The idea behind additions is trying to add new themes or trying to prevent duals. Harley 

(1931) defines these ideas as tradeoff between Economy of Play and Economy of Force. So-

called English composers' school prefers Economy of Play. In contrast, the Bohemian school 

prefers Economy of Force. 

2) Stereotypical-agent transformations � replacing one type of piece with another. In 

chess composing, Black should use the strongest pieces; White should use the weakest 

pieces. Thus, a Black bishop becomes a Black queen and a White queen becomes a White 

rook if it is still a 2-mover. 

3) Stereotypical-area transformations � exchanging between ranks or between files. 

ICP implements moving a piece as this kind of transformations. The idea is to take sliding 

pieces (bishops, rooks, and queens) as far as possible. 

4) Transparency transformations � moving all pieces toward the center. The idea is to 

put the Black king in the center, which is regarded as a small improvement, because it is 

usually harder to mate the Black king there. 

 ICP uses a hill-climbing search. It means that the best son was chosen for development 

at each step. For each newly generated position the score was calculated using the quality 

function described in Appendix B. Thus, at the end of the process we achieve local maxima. 

This is the reason why only slight improvements were found by ICP. 

ICP improved the quality of only 10 out of 36 known two-move mate problems (about 

28%). Most of the achieved improvements are considered as slight ones.  
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2.5.2.  A Global Scheme for Problems Composing 

In contrast to ICP, Shlosser's (1988, 1991) main goal was to construct problems in as 

many moves as possible. He was probably the first to propose a general method of using a 

retrograde analysis for chess problems composition. His method includes three main stages: 

1) Constructing a complete database of new problems starting from given mating 

positions, in a similar way to the construction of endgames by Thompson (1986, 

1996), using a retrograde analysis. 

2) Eliminating all incorrect positions according to chess composition rules positions. 

3) Selecting high-quality chess problems based on evaluation values given by a human 

chess expert. 

The differences between ICP and Shlosser's model are as follows: 

1) ICP, practically, deals with any number of pieces on the board, while Shlosser's 

model examines the problems with just a few pieces. 

2) ICP uses a move-forward hill-climbing technique for the given problem instead of 

using a move-backward retrograde analysis. 

3) ICP starts with 2-movers and ends with them. There is no change in the number of 

the moves, while in Shlosser's model we start in 1-mover and can finish with 32-

mover. 

4) ICP uses a quality function instead of a proposed by Schlosser human expert in 

order to evaluate many new problems automatically and more quickly. 

Retrograde analysis is useful to create problems in many moves. Haworth (2000) 

achieved a KRNKNN problem (White has king, rook and knight; Black has king and two 

knights) with mate in 243 moves and Thomson (2000) achieved a KRNKNN problem in 262 
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moves. The only quality of problems such as these two is the length of the solution. ICP 

looks for quality of 2-movers, defined by international masters of chess composition. 

2.5.3. Composing in Tzume-Shogi 

Shogi is a popular chess-like game in Japan  [il-6]. It has different rules. It is played on 

a 9x9 board, some of the pieces are the same as in chess, but some are different. The first 

player that moves is called Black. Pieces can be promoted as in chess but in a different way. 

There is an ability to reuse captured pieces. The average branching factor of Shogi is 80 

rather than 35 in the traditional chess. An average game lasts more time than a usual chess 

game. Other differences can be found in Matsubara and Grimbergen (1997). A detailed 

description of Shogi's rules can be found in Leggett (1996). 

Tsume-Shogi is a composition problem in Shogi, where the opposite king (there is no 

White or Black) must be mated in a given number of moves. There are a few works that 

discuss composing of new Tsume-Shogi problems. 

Noshita (1991) presents a random-generation approach for Tsume-Shogi. Using his 

method many positions are generated at random and the positions (positions-to-mate) that 

lead to mate positions (position-in-mate) are chosen. Finally, the positions are reduced into 

other positions with fewer pieces but with longer sequences of moves. Using this approach, 

Noshita has composed problems in 13-19 moves ("moves" means "plies" in Shogi's 

terminology while in chess a move means 2 plies). This method is called algorithmic-

generation by its inventor. 

Hirose et al. (1997) use a reverse method which is actually an extension of the 

retrograde method of Thompson (1986, 1996). The whole process includes 4 steps: 
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1) Generating of a mating position. It is done by generating a mating position with a 

few pieces and adding about 1 to 3 attacking pieces at distance of 1 to 3 from the 

opposite king. 

2) Applying a reverse method up to the N reversed plies from the selected mating 

position in step 1. The generated positions are tested for being problems in n-moves. 

3) Optimization.  All useless pieces are removed. It is done by testing whether we still 

have a problem in N-moves. 

4) Evaluation of the remaining positions. The evaluating function uses 13 factors for 

estimating a value of a problem. Not all these 13 factors are described by Hirose et al. 

(1997). The main parameters of the evaluation function is described as follows, citing: 

1) The number of the attacking-side moves in which the moved or dropped 

pieces are taken immediately by the defensing-side (this is the most important). 

2) The number of the attacking-side moves in which the moved pieces are no-

promoted. 

3) The number of the attacking-side moves which take the defensing-side pieces. 

4) The depth and the breadth of the search space. 

5) Position of opponent's king. 

6) The number of pieces on the board. 

(end of citation). 

From among the problems the best valued problem is chosen. Some of the composed 

problems were published, under pseudonym, in Tsume-Shogi composition journals. 

Watanabe (1999) also implements similar ideas for composing problems in Tsume-

Shogi. Watanabe et al. (2000) conclude the ideas of the reverse methods and the 

algorithmic-generation methods combining them into a new computer composition 

approach. He claims that this combined method is suitable for all chess-like games. 
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Chapter 3

3. DICP, 2-move Chess Composer, and K-move 

Chess Composer Models 

In order to find the best improvement(s) for each mate problem (if exists), we 

investigate all possible similar positions. Therefore, we use brute-force search to generate 

these positions. All regular brute-force search methods have a time complexity of O(bd), 

where b represents the branching factor and d represents the depth of the generated positions 

tree (Russell et al. 2002). The depth is the number of applied changes/transformations 

starting from an original mate problem. In our domain, b is all applied transformations rather 

than all legal chess moves. The estimated average branching factor in the chess game is about 

35 while our branching factor is 368 on average (see Table 1, subsection 3.3). 

We developed 2 models. DICP was the first model that was capable of applying 

transformations up to three levels. We ran DICP on the same set of 36 mate problems as ICP 

(see results in subsection 4.1). The Chess Composer model is an improvement to DICP.  It is 

capable of running some problems up to four levels (see results in subsection 4.2). 

 

3.1. General Description 

Chess Composer uses the Depth First Iterative Deepening (DFID) search algorithm 

described by Korf (1985). Korf proved this scheme to be asymptotically optimal among all 

brute force methods. The total time for nodes to be expanded is O(bd), where b is the 

branching factor, and d is the depth of the developed tree. 
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In practice, observing a small set of problems, we set the depth to 3, since it takes on 

average about 32 minutes for a problem at this level, while it takes about 50 hours at level 4.  

A simple Bounded DFS with order on transformations was applied to the set of 36 

problems (see Figure 1).  It is slightly preferable to DFID, used in Chess Composer, because 

DFID investigates inner nodes a couple of times. The algorithm is self-explanatory. Its 

functions are the same as in the Chess Composer's algorithm which is presented later. 

1) BoundedDepthFirstSearch (OriginalProblem , MaxDepth) 

1. PushIntoStack ({OriginalProblem, 0})     // 2nd parameter is for the node's level in the tree 

2. While   NotEmptyStack ( ) 

2.1.    {CurrentPosition, Level}  !  PopFromStack() 

2.2.    if  ImprovedMateProblem (CurrentPosition, OriginalProblem) then 

2.2.1. StoreImprovedMateProblem (CurrentPosition) 

2.3.    if (Level < MaxDepth) then  

2.3.1. For each Successor of CurrentPosition (from right to left) 

2.3.1.1.  CurrentPosition = ApplyNextTransform (CurrentPosition) 

2.3.1.2.  PushIntoStack({CurrentPosition, Level + 1}) 
 

2) ImprovedMateProblem (CurrentPosition, OriginalProblem) 

if    ( LegalChessPosition (CurrentPosition)  and  

             LegalTwoMoveMateProblem (CurrentPosition) and // see page 28 for details 

           ProblemEvaluater (CurrentPosition) >  ProblemEvaluater (OriginalProblem)) 

then return true 

else return false 

Figure 1: Simple Bounded DFS used in DICP 

 

In Chess Composer, the algorithm was changed. Asymptotically, DFID is equal to the 

bounded DFS. The problem of inner nodes was decreased to the minimum by developing a 

better algorithm. The general algorithm is described in Figure 2. The improvement is due to 

the function Iterate explained below.  
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We tested an extended database of 100 problems including the 36 problems mentioned 

before. For problems with no improvement after a sequence of three transformations we seek 

one level deeper using the iterative deepening scheme. The results in subsection 4.2 show 

that Chess Composer improves problems that DICP could not improve. 

Composer is the main function. It gets as input MaxDepth which is equal to 3. It then 

iterates to depth 1, 2, and 3. If no improvement was found, it iterates to depth 4. 

Iterate is a bounded DFS function. It generates all nodes until Composer�s bound (level 

3). In order not to reapply the complex and time-costly function ImprovedMateProblem (see 

explanation below), the algorithm calls this function only for nodes at the bottom level. By 

this, we gain some improvement in inner nodes and reduce the main disadvantage of Iterative 

Deepening scheme which is duplicate expansion of inner nodes. The Iterative Deepening 

scheme, described in Korf (1985), expands inner nodes MaxDepth � d 

times, 0 , while in our algorithm these nodes are fully expanded only once. 

Of course, the number of generated nodes is the same in both algorithms. However, it is less 

important because the cost of generating a node is much less than the cost of its expansion. 

d MaxDepth< <

ImprovedMateProblem checks whether a new position is an improved 2-move chess 

mate problem. It is a very costly function because it calls three functions: 

LegalChessPosition, LegalTwoMoveMateProblem, and ProblemEvaluator. The last function 

is the most involved and time-consuming because it checks whether a new position contains 

any themes, bonuses, and penalties. 
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1) Composer(OriginalProblem, MaxDepth) 

1. ImprovedList = NULL 

2. For ( I = 1; I <= MaxDepth; I ! I + 1) 

2.1.    Iterate (OriginalProblem, I) 

3. If isEmpty (ImprovedList ) 

3.1.    Iterate (OriginalProblem, MaxDepth + 1) 

4. return bestScored problem from ImprovedList 

 

2) Iterate (OriginalProblem, Bound) 

3. PushIntoStack ({OriginalProblem, 0})     // 2nd parameter is for the node's level in the 

tree 

4. While   NotEmptyStack ( ) 

4.1.    {CurrentPosition, Level}  !  PopFromStack() 

4.2.     if  (Level == Bound)  // in this case we investigate the CurrentPosition 

4.2.1.     If ImprovedMateProblem (CurrentPosition, OriginalProblem) then 

4.2.1.1. ImprovedList ! StoreImprovedMateProblem (CurrentPosition) 

4.3.     else       // i.e.: if  (Level < Bound) − in this case we do not investigate the 

CurrentPosition 

4.3.1.     For each Successor of CurrentPosition // from right to left 

4.3.1.1.  CurrentPosition = ApplyNextTransformation (CurrentPosition) 

4.3.1.2. PushIntoStack ({CurrentPosition, Level + 1}) 

 

3) ImprovedMateProblem (CurrentPosition, OriginalProblem) 

1. if    ( LegalChessPosition (CurrentPosition)  and  

         LegalTwoMoveMateProblem (CurrentPosition) and 

         ProblemEvaluater (CurrentPosition) > ProblemEvaluater (OriginalProblem)) 

then return true 

else return false 

 

Figure 2: Optimized Depth First Iterative Deepening Composer, used in Chess Composer 
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Other components: 

• LegalChessPosition: Checks the legality of a position according to the chess rules.  

• LegalTwoMoveMateProblem: Tests whether a given position is a two-move mate 

problem (including the test for non-cooking. i.e., no more than one keymove). This 

component uses a suitable limited search engine and checks all legal chess moves 

including the two special moves (in contrast to ICP): castling and en passant capture. 

• ProblemEvaluator: Analyzes a position as a mate problem and computes its quality score. 

This function is described in the next sub-section. 

• ApplyNextTransformation: Applies the next transformation on a given position according 

to a fixed ordered list of transformations. 

Chess Composer uses three kinds of transformations while attempting to improve a 

problem (the ApplyNextTransformation function):  

(1) deletion of a specific piece 

(2) addition of a specific piece 

(3) transparency of all pieces 

The last one is done through two possible movements:  

(1) file-transparency: All pieces are transferred I files to the right or to the left, 

and  

(2) rank-transparency: All pieces are transferred J ranks to the up or down. 

Additional possible transformations (e.g., moving a certain piece, exchanging a piece) 

are introduced in Kerner (1995) and HaCohen-Kerner et al. (1999). These transformations 

can be seen as complex transformations based on the basic transformations of deletions and 

additions. That is, every transformation can be presented by suitable deletion(s) and/or 

addition(s). 
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3.2. Heuristic Quality Function 

The heuristic function that computes the quality score of a position is defined as in ICP 

(HaCohen-Kerner et al. 1999) as follows:  

qm =  
i j k

i j k

0  
V(T ) V(B )- V(P ) 2

illegal
legal mover

⎧⎪
⎨ + −∑ ∑ ∑⎪⎩

where qm is the quality score. A position is illegal when:  

(1) It is not legal by the chess rules (see Appendix A) 

(2) It is not a two-move mate problem (see subsection 2.2.1) 

(3) There is more than one keymove (cooked) 

Let V be the value function, Ti is the improved set of all themes (Appendix C) included 

in the position, Bj is the set of all bonuses (Table 10 in Appendix B) granted to the position 

and Pk is the set of all penalties (Table 11 in Appendix B) associated with the position. 

Various themes, bonuses, and penalties were collected consulting two international masters 

in chess composition and taken from various literature including the classic books of chess 

composition (Harley 1931, Howard 1943). The evaluation function, as it was presented at 

HaCohen-Kerner et al. (1999), is given in Appendix B. We represent it with some 

improvements (Appendix C) because: (1) some definitions have been revised and (2) for the 

convenience of the reader. 

We define and apply eleven composition themes: Self-blocking, self-pinning, 

unpinning, half-pinning, direct battery, indirect battery, Grimshaw, pickaniny, king-flights, 

lonely Black king and tempo. Each theme has its own unique score given by international 

masters of chess composition depending on its complexity and relative importance. 

Definitions of these themes are given in Appendix A and with revision in Appendix C. 
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Bonuses and penalties are additional tools for evaluating a problem. An example of a 

bonus is a placement of the Black king in the center of the board. A Black king in the center 

is supposed to be better because it is harder to mate him. On the other side, if the Black king 

is at an edge or at a corner, the position gets a penalty. 

  

3.3. Complexity of DICP and Chess Composer 

Chess composition rules do not allow a chess problem to contain more than one king, 

one queen, two rooks, two bishops, two knights, and eight pawns for each color (Harley 

1931, Howard 1943). Another rule is that bishops of the same side have to be on differently 

colored squares. In this model, we keep to these rules. However, in order to estimate the 

complexity, we assume, in contrast to chess composition rules, that each one of the p pieces 

can be added at each step on an empty square. 

Let p be the number of pieces we can add and let s be the number of empty squares. 

Assuming d to be the number of additions on this additions-tree, the number of nodes on 

level d by naïve additions is: 

!* ( 1)* ( 2)*...* ( 1) *
( )

d sps p s p s p s d p
s d

− − − + =
− !

  (1) 

For instance, the 1-level enables p*s additions, i.e., each kind of piece on each empty 

square. The 2-level enables p*(s-1) additions, because the number of the empty squares was 

reduced by one. Obviously, many positions are repeated by permutations of additions. For 

example, a White bishop can be added before a Black knight and vice-versa. 

To prevent these repetitions, we apply an order on the added pieces as follows: Q 

(White queen) > R (White rook) > B (White bishop) > N (White knight) > P (White pawn) > 

q (Black queen) > r (Black rook) > b (Black bishop) > n (Black knight) > p (Black pawn), 
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which means that if we have added a piece from the list (say N), then we cannot add a piece 

which precedes it in the list (Q, R, B). 

Applying this order we get the following formula for the number of nodes at level d of 

the additions-tree without repetition, assuming d to be the number of the additions: 

1 2 3 2 1

1 2 3 2 1 01 1 1 1 1 1

! ..... 1
( )!

d d d

d d d

i p i i i i i

i i i i i i

s
s d

− −

− − −

=

= = = = = =− ∑ ∑ ∑ ∑∑∑   (2) 

Original Problem 

Q    R  B  N  P      q  r  b  n  p 
. . .

 

.  

Figure 3: The additions-tree up to depth d = 2 

 

Figure 3 presents the tree until depth d = 2. The number of possible additions is: 10 (for 

[Q �p]) + 9 (for [R �p]) + 8 (for [B �p]) + . . . 1(p) = 55, exactly as expressed in formula 

(2). The implementation of the order on additions is quite simple (Appendix F).   

Expression (2) leads to the following equation. 

Claim: 

 
1 2 3 2 1

1 2 3 2 1 0

1

1 1 1 1 1 1

! ( 1
! ..... 1

( )! ( )! !

d d d

d d d

d

i p i i i i i
i

i i i i i i

s p i
s

s d s d d

− −

− − −

=
=

= = = = = =

)+ −
=

− −

∏
∑ ∑ ∑ ∑∑∑       (3) 

 

 

p Q . . .  p 
. . .  

R . . .  p B B   . . .  p  n      p 
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Proof (by induction on d): 

d = 1, 
1

0

1

1

1

! ( 1
! 1

( 1)! ( 1)!1!

i p
i

i

s p i
s sp

s s

=
=

=

)+ −
= =

− −

∏
∑  

d=2, 

2 1

1 0

2

1

1 1

! ( 1
! (1 ( 1)(1 ... ) ( 1)

( 2)! 2 ( 2)!2!

i p i
i

i i

s p i
s p ps s p s s

s s

=
=

= =

+ −
+

= − + + = − =
− −

∏
∑ ∑

)
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d=3, 
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( 3)! 2

( 1)( 2) ( )
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Base of induction, d=k: 

1 2 3 2 1

1 2 3 2 1 0

1
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Or 
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1
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We need to prove: 

1 1 2 3 2 1

1 2 3 2 1 0

1

1

1 1 1 1 1 1 1

( 1
..... 1

( 1)!

k k k k

k k k k

k

i p i i i i i i
i

i i i i i i i

p i
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+
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+

∏
∑ ∑ ∑ ∑ ∑∑∑  

Let us define "t" for "trivial". 
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The ratio between Eq. (3) and Eq. (1) suggests significant asymptotical improvement 

compared with formula (1). That is, our special order of additions improves the order of our 

generation algorithm. 

11 1

1 1

1

( 1) ( 1)
(3) 1 1 1 1 1( )
(1) !

d d

d d
pi i

d dd
i i

i

p i p i
p i
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= =
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∏

0  (5) 

Taking into consideration also the two other kinds of transformations, deletions and 

transparencies, we can achieve the complete order, assuming that:  

(1) Deletions are always done before additions, and transparency is before deletions 

(2) In case of the addition of the same pieces, the order is due to the proximity of a 

piece to 0-square (h8 = 0; a8 = 7; h1 = 56; a1 = 63). 

(3) Ordering deleted pieces is also due to their proximity to 0 (i.e. to square h8).  

 

 To clarify, on the first transformation we use all transformations, e.g. transparency, 

deletions, additions. The second transformation depends on the first: supposing the first 

transformation was a deletion, we can choose only deletion of the rest pieces and additions 

on the second transformation. Thus, we can have a sequence deletion->deletion->addition, 

but never deletion->addition->deletion. 

Having applied all orders, we get a complete order on the transformations, and the 

algorithm becomes d! times faster compared with the naïve algorithm (Formula 1) at the 

expanses of applying the order on transformations which is simple (see Appendix F). 

Deletions become relatively important when we treat positions with many pieces. This 

is because of the already mentioned chess composition rule about number of pieces: there 
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cannot be more than 8 pawns, 2 bishops, 2 rooks, 2 knights, 1 queen, and 1 king for each 

color and two same colored bishops cannot be placed on squares with the same color. 

Our theory is supported by experimental results. Each chain containing the same d 

transformations leads to the same position. That is, the same position can be reached in d! 

different permutations. Thus, at level d we need to explore only O(bd/d!) nodes. Expression 

(3) shows us that the order on additions only is efficient enough. It is reasonable because 

additions contribute to branching factor much more than other transformations. 

The results presented in Table 1 support this theory. The theoretical average is always 

in practical average range. If we consider each problem, the theoretical and the practical 

values are not the same. There are few reasons: 

1) Theoretical calculations do not take into account the rule described at the previous 

paragraph about maximal number of pieces. Therefore, we can add fewer pieces, than 

we expect to add theoretically, and the actual average becomes lower. 

2) Theoretical calculations do not take into account the fact that we can add more if we 

removed a piece and delete more if we added a piece. Thus, practically generated 

nodes can be more than expected. 

3)  Theoretical calculations do not take into account the fact that we can add less if we 

added a piece and delete less if we removed a piece. Thus, practically generated nodes 

can be less than expected. 

Because there are many more additions than deletions on the average, the theoretical 

value is usually higher. It happens in 99 positions of 100 after 2 transformations and in all 

positions after 3 transformations. As expected, the only positions in which the theoretical 

value is higher than the actual are those with many pieces. What happened is, we cannot add 

a piece anymore, but we can delete many pieces on the first transformation. Then, we can 

add more than theoretically. 
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 No. of Generated Positions for All 100 Problems 

d 1-level 2-level 3-level 4-level 

(for only 6 problems) 

Average # of nodes 364 67,087 7,822,004 842,936,433 

Deviation (nodes) 85 28,727 4,584,337 289,034,621 

Theoretical average 3641/1! = 

364 

3642/2! = 

66,248 

3643/3! = 

8,038,091 

3644/4! = 731,466,251

Average time (sec.) 0.16 20.73 1,881.74 168,272 

Deviation (sec.) 0.07 7.21 782.64 57,785 

Table 1: Average number of generated positions and running time by Chess Composer for all 

100 original problems 

In practice, there are hundreds (364 ± 85) of nodes developed after one transformation 

for an average problem, tens thousands of nodes (67,087 ± 28,727) are developed after two 

transformations, millions of nodes are developed after three transformations (7,822,004 

4,584,337), and almost trillion (842,936,433± ± 289,034,621) nodes are developed after four 

transformations (Table 1). These values are highly comparable with theoretically calculated 

values, taking into account the above explanations about the limitations of the model. The 

running-time needed for investigating all generated nodes on the first 3 levels for an average 

problem is approximately 32 minutes and about 47 hours on the first 4 levels.  
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3.4. 64-bit Representation 

Although our model implements a soft real-time system (i.e., we should give solution 

within either minutes or an hour) rather than a hard real-time (i.e., we must give an answer 

within seconds; there is a deadline after which very costly things can happen), the run-time is 

still important. Therefore, we speed up the model by using a 64-bit representation (see details 

in Appendix D). 

Adelson-Velskiy et al. (1970) were the first to propose an approach of 64 bits for a 

board presentation applied in their chess program Kaissa. Other programmers used the same 

approach with success in their chess playing programs (Slate and Atkin, 1977; Heinz, 1997; 

Hyatt, 1999). The main ideas behind this representation are economy of loops, absence of 

checking whether a piece moves out of the board, and the ability to compute complex 

calculations just in a few bitwise operations (Adelson-Velskii et al., 1970; Slate and Atkin, 

1977). 

In this representation, each kind of piece has a unique 64-bit machine word (see 

Appendix D). Adelson-Velsky et al. (1970) used the M20, a Russian computer. According to 

them, the real length of the word in this machine was less than 64 bits, and a 64-bit word was 

only virtual. State and Atkin (1977) used CDC 6400 which also did not have 64-bit words. 

The use of 64 bits in nowadays computers becomes wider and wider. Heinz's Darkthought 

(1997) and Hyatt's Crafty (1999) use 64-bit machines.  

In our experiments, we use two 64-bit machines: AMD64 and Itanium-2. The output of 

our move generator is an array of new positions. All positions in the array are legal, 

presupposing that the previous position is legal too (full details of our implementation are 

given in Appendix D).  
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Our move generator is fast enough compared to those of known programs. It gives a 

speed of more than 22 million positions per second if we develop all variants starting from 

the initial position (see Diagram 19 of Appendix A) using simple DFID. The two special 

chess moves, castling and en-passant, are also allowed.  

Table 2 presents different runs of our move generator on different platforms with 

different configurations. To estimate speed, the initial chess position was developed up to 

depth 8. The speed is defined as the number of generated positions developed per run-time of 

the program. We use AMD64-3400+ running on linux 2.6.11 and compile with gcc 3.4.3. 

The known professional program ChessExplorer  [il-4] (we have no results regarding other 

professional programs) uses a 32-bit approach and make the same with speed of about 15 

million positions per second. Using the representation of 64 bits, the Chess Composer's (on 

AMD64 3400+) move generator is much faster (see Table 2). It must be also pointed that our 

move generator is not fully optimized. Therefore, its results are more impressive in 

comparison with 32-bits oriented programs. 

 

Pos./sec. AMD64+ilogb AMD64+bsf/bsr Itanium2+ilogb 

'gcc –m64' 18,401,251 22,163,976 4,873,584 

'gcc –m32' 7,109,440 7,445,146 --- (no 32-bits support) 

Table 2:  Generation of all possible positions from the initial chess position up to 8 plies with 

different configurations 

Roughly speaking, 64-bit representation for a board uses a word for each kind of 

pieces. There are 12 such a words. Using bitwise operations, we can solve different questions 

in position analysis fast. One of the questions is a fast move generator. Usual 32-bit 
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representation does not use bitwise operations (see details of 64-bit representation in 

Appendix D). 

The 'ilogb' and 'bsf/bsr' in Table 2 mean two possible implementations for λ  and µ  

(see full details in Appendix D). λ  and µ  are, respectively, the least and the most important 

bit that is on, following Adelson-Velskii et al. (1970). 'bsf/bsr' are two commands of the 

AMD's instructions set. They are, unfortunately, absent in Itanium2. '-m64' and '-m32' are 

two different compilation parameters for gcc, compiling into 64-bit platform and into 32-bit 

platform (we use the exactly same 64-bit structure but compile into 32-bit architecture; this is 

different from a usual representation used in Chess Explorer, for example). 

Table 2 presents the following result. The best architecture for our program is AMD64. 

We can implement λ  and µ  using two special commands, 'bsf' and 'bsr'. If we compile with 

gcc �m64, we get 3 times faster results than if it would with gcc �m32. Itanium2 is not good 

for our generator. Finally, we can use existing 'ilogb' command if we do not want any 

assembler support. 

The main idea of rotated bitboards is to precalculate moves for the sliding pieces 

(Heinz 1997 and Hyatt 1999). The main difference between the generators based on rotated 

bitboards and our generator is the absence of use of rotated bits in our generator. The reason 

for this is the need to manage 3 additional bitboards with occupied pieces. "Looping" through 

different directions of sliding pieces is efficient enough, especially on a 64-bit architecture. 

However, we have a use in pre-calculated ranks for horizontal moves of rooks and queens 

(see "rm" in Table 17 of Appendix D). 
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3.5. Comparison to Other Models 

Chess Composer, as opposed to ICP, uses only three kinds of transformations. 

Therefore: (1) the branching factor of Chess Composer is smaller and (2) the depth of the tree 

(the number of the applied transformations) developed by Chess Composer should be higher. 

The idea is that by combination of primitive transformations, i.e., deletions and additions, we 

can realize all other complex transformations. For instance, moving a piece from x to y is 

equal to its deletion from x and its following addition on y. Exchanging of a piece x with 

piece y is equal to deletion of piece x and the following addition of piece y on the same 

square. Nevertheless, a complex transformation such as transparency was added because it 

gives immediate improvement for problems in which it is possible to move all pieces in such 

a way that the Black king will be in the center. Transparency transformation does not affect 

the total complexity. 

ICP uses a hill-climbing search based on a heuristic function (see Appendix B) to find a 

local maximum in the near-problem space. Hill-climbing search is an informed search. That 

is, it uses information of the newly developed nodes (Russell et al. 2002) in order to prune 

some of the transformation sub-trees.  

In contrast, Chess Composer uses a brute force search. This is an uninformed search. 

That is, it does not depend on any information contained in the newly developed nodes. This 

approach overcomes the main weakness of ICP which is not developing the sub-trees whose 

root-positions are: 

1) not legal according to the rules of chess composition. 

2) not two-move mate problems with only one keymove. 

3) of a lower quality score than the original problem. 
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Chess Composer develops all possible transformations on all levels (Table 1). That is, it 

traverses all nodes to a fixed depth in order to find the best improvement (global maximum). 

Of course, the complexity grows up, but this is exactly the non-trivial solution: using the 

slower method we are able to find much better positions, which ICP fails to find because of 

limitations of its heuristic function. As results show, most of the finest improvements were 

found after sequences of two and three transformations, while, if we use each independent 

transformation from these sequences, the best first method fails, because we get illegal 

positions. 

The main differences between Chess Composer and Schlosser's model related to 

computer composition of chess and chess-like mate problems are: 

1. Chess Composer uses a move-forward technique from the given problem instead of 

using either move-backward or random techniques. 

2. Chess Composer tries all possible transformations for every examined position. 

Therefore, its branching factor is much higher. 

3. Chess Composer starts with 2-movers and ends with them. There is no change in the 

number of the moves, in contrast to the model presented by Schlosser (1988, 1991).  

4. Chess Composer deals with a relatively high number of composition themes which 

are treated automatically by a computer rather than by a human. 

5. The evaluation is done automatically and not by a human expert as in Schlosser's 

model. 

 The differences between Chess Composer and ICP are: 

1. Chess Composer tries all possible transformations for every examined position. 

Therefore, its branching factor is much higher. 

2. Chess Composer uses brute force which allows finding such a problems that would 

not been found by the best-first of ICP.   
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3. The quality function in Chess Composer is different. The definitions of themes are 

more detailed (Appendixes B and C). 

4. Chess Composer uses 64-bit approach which gives additional speed-up. 

 

3.6. K-movers Model (k > 2) 

K-movers are direct mate problems in which White mates Black in k moves. An 

example of a solution tree for a 3-mover is shown in Figure 4. Dashed lines represent White's 

moves. Solid lines represent Black's moves. There are five plies. The first ply is the keymove 

(1-2). It is always unique. When the keymove is not unique the problem is considered as 

cooked and it is canceled.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Primary dual 

keymove 1 

A
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C

K L M N 
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First mate 
level 

Second mate 
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Short variant 

B
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I HG 

S R Q 

F E D

9 8 
Secondary 

dual 7 

6 5 4 3 

2 

Figure 4: An example of  a solution tree for 3-movers 

 

Duals occur when there is more than one possible continuation for White. Duals are a 

significant flaw. When a dual occurs on the first ply, the problem is known as cooked. When 
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a dual occurs on the third ply, it is regarded as a" primary dual". When a dual occurs on the 

five ply, it is regarded as a "secondary dual". In a k-mover, we call duals by their ply, i.e. 3-

ply dual, 5-ply dual etc. Examples of primary or 3-ply duals are represented by 3-7, 3-8, and 

3-9. Examples of secondary or 5-ply duals are represented by F-R, F-S, and F-T. The deeper 

a dual occurs, the less serious is it ("cook" >> primary dual >> secondary dual >> 7-ply dual 

etc.) 

A minor dual is a dual each variant of which is forced in other lines of play. For 

instance, if A=7, B=8, and C=9, than the primary dual is minor dual. Otherwise, it is a major 

dual. Major duals are considered as a more serious flaw than minor ones. 

Short variants are another possible flaw of a problem. Examples for such variants are 

variants which end in "A" or in "8". The shorter a variant the more serious is the flaw. 

So-called Black duals are another insignificant flaw. Black duals occur when two 

moves of Black, as a reply to White's move, have the same White's reply. For instance, if "B" 

and "C" or "O" and "P" are equal then it is a Black dual. 

Definition 3.1.  A "mate level" #n is defined as all pairs of moves, black-white, on plies 

n+2 and n+3 (see Figure 4 and 5). 

Definition 3.2.  A cluster is a set of nodes which includes a white-to-move node, all its 

sons, and all sons of the sons (nodes inside the dashed circle in Figure 5). 

For example, there is only one sub-tree on mate level #1 which starts at "2" and ends at 

"C" (Figure 4). So, A, B, and C should be uniquely different and 7, 8, and 9 are not part of 

the calculations because they are a dual. There are 4 clusters on mate level #2. Their roots are 

7, 9, B, and C. Therefore, there are 4 groups of different White moves in these clusters (duals 

are not counted): (1) O and P, (2) T, U, and V, (3) W, X, and Y, (4) Z and 0. We would like 

to get uniqueness of White moves in clusters of all mate levels. 
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Definition 3.3. A solution tree of an ideal k-move problem (see Figure 5) is defined as 

(based on discussions in Harley 1931, 1944): 

1) It is a full tree. This is because "short" variants are considered as a flaw. 

2) Nodes that represent positions with white-to-move have only one son. The reason is an 

absence of duals. 

3) Nodes that represent positions with black-to-move have as many sons as possible. Sons 

of these sons are uniquely different between them. There are two reasons for that: (1) 

we would like to have as many variants as possible and (2) we do not want so-called 

Black duals. 

 

 

 

 

 

 

 

 

 

 

Cluster on 
mate level 1 

Cluster on 
mate level 2 

Figure 5: An example of  an "ideal" tree for 3-movers 

 

To improve a problem, we can try to change the solution tree towards an ideal tree. The 

following situations can happen while comparing an original problem to a new problem: 
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1) A variant (a sequence of black-white moves) was added to a cluster. If it adds an 

additional unique variant, it is good for us. If it adds a Black dual, it is bad for us. The 

opposite is right when a variant was removed. 

2)  A dual was added to a cluster. It is bad for us. The opposite is right when a dual variant 

was removed. 

3) A short variant became longer. It is good for us. The opposite is bad. 

 

The proposed metric for measuring k-move trees of problems in k moves is shown in 

Figure 6. The measuring is done by evaluating the whole solution tree of a certain problem. 
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Figure 6: A metric for measuring k-move trees of problems in k-move 

 

In this metric: 
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Change_in_pieces is the change in pieces value. The value of a particular piece is defined 

following Shannon's (1950) definitions (Table 12). 

Relative_pieces_value_coef is a controllable coefficient which describes the importance of 

the change in pieces value. 

cluster_scorei is the score that cluster #i achieve. 

duals_penaltyi is the penalty for the duals occurred in the discussed cluster. 

#unique_variants is the number of unique variants in the discussed cluster. 

#all_non_dual_variants is the number of all variants the discussed cluster. 

Cluster's_level is a cluster's score which depends on the mate level this cluster belongs to. 

Relative_cluster_coef is the coefficient which transforms the variants-based value for the 

discussed cluster from range [0,1] to range [0, Relative_cluster_coef]. 

#major_duals is the number of major duals in the discussed cluster. 

#minor_duals is the number of minor duals the discussed cluster. 

Relative_major_duals_coef is the penalty for a major dual. 

Relative_minor_duals_coef is the penalty for a minor dual. 

Dual's_level_score is the dual's score which depends on the mate level this dual belongs to.  

 

The meaning of this metric is as follows. If we add a variant to a cluster and it is 

different from other variants, the total score becomes higher due to the cluster_scorei 

parameter. The same parameter recognizes the reduction in variants too. If the added variant 

is not unique, the score becomes less. This way the problem of Black duals seems to be 

solved. 

The formula for calculating a cluster score is defined in such a way that we get first a 

number between zero to one, by dividing the number of all unique variants by the number of 

all variants. This number is transformed into a range that was chosen due to 
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relative_cluster_coef from [0,1] to [0, relative_cluster_coef ]. An additional bonus is given to 

the unique factor by taking the square of #unique_variants. 

This metric prefers more clusters because of the additive nature of the formula, i.e. the 

more added clusters there are, the higher the total score. It contributes to the problem, 

because the whole problem becomes harder to solve due to many different variants.  

Moreover, this metric prefers clusters on deeper levels to clusters on lower levels due to 

the cluster's_level parameter, meaning that if two clusters have the same score, but in the first 

situation the cluster is deeper, this situation is preferred and the deeper cluster achieves 

additional score according to cluster's_level. It contributes to the problem because of the two 

following reasons: (1) in a k-mover we prefer more variants in k moves; (2) this encourages 

short variants to lengthen or to be exchanged with longer variants. 

In this metric, duals are not counted as well as the whole dual's subtree. The main 

reason is that we can get very high-scored clusters in the subtree and therefore the total score 

becomes higher. However, this situation is not good because duals are flaws and duals on the 

earlier levels are considered as worse.  

The reason for the duals_penaltyi parameter is as follows. If a dual is cancelled in a 

new tree then the score of the cluster becomes higher. On the other hand, an added dual 

receives a penalty. This parameter depends on the type of the dual: major (score due to 

Relative_major_duals_coef) or minor (score due to Relative_minor_duals_coef) dual. 

Dual's_level is a parameter which distinguishes between duals that are nearest to root levels 

and those outlying from the root duals. 
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3.6.1. The K-movers' Improver Algorithm (k > 2) 

The general algorithm for improving k-movers is shown in Figure 7. The general 

scheme of applying transformations is exactly the same as in the case of 2-movers in Chess 

Composer (see chapter 3.2). The difference is found in two functions: K-Move_Solver and 

KMoveMetric. KmoveMetric is implemented applying DFS scheme to the metric defined in 

Figure 6. KMoveMetric is shown in Figure 11 and is discussed later. 

 

1) K-Move_Composer(OriginalProblem, MaxDepth) 

// applies improved depth first iterative deepening to the original problem  

1. ImprovedList = NULL 

2. For ( I = 1; I <= MaxDepth; I ! I + 1) 

2.1.    Iterate (OriginalProblem, I) 

3. If isEmpty (ImprovedList ) 

3.1.    Iterate (OriginalProblem, MaxDepth + 1) 

4. return bestScored problem from ImprovedList 

 

2) Iterate (OriginalProblem, Bound) 
// uses Bounded DFS to develop and analyze all nodes to depth Bound 

1. PushIntoStack ({OriginalProblem, 0})      

     // 2nd parameter is for the node's level in the tree 

2. While   NotEmptyStack ( ) 

2.1.    {CurrentPosition, Level}  !  PopFromStack() 

2.2.     if  (Level = Bound) then // in this case we investigate the CurrentPosition 

2.2.1.     If ImprovedMateProblem (CurrentPosition, OriginalProblem) then 

2.2.1.1.ImprovedList ! StoreImprovedMateProblem (CurrentPosition) 

2.3.     else  //  if (Level < Bound) − in this case we do not investigate the CurrentPosition 

2.3.1. For each Successor of CurrentPosition // from right to left 

2.3.1.1. CurrentPosition = ApplyNextTransformation (CurrentPosition) 

2.3.1.2. PushIntoStack ({CurrentPosition, Level + 1}) 
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3) ImprovedMateProblem (CurrentPosition, OriginalProblem) 

// finds if the current position is better than the original 

1. if  legal (CurrentProblem) then 

1.1. {has_solution, type } <- K-Move_Solver(CurrentProblem, k) 

1.2. if    ([has_solution = true]  and [type = (in_k_move and not cooked)] and 

           KMoveMetric (CurrentPosition) > KMoveMetric (OriginalProblem)) then 

1.2.1. return true 

1.3.  else 

1.3.1. return false 

Figure 7: The general algorithm for improving k-movers 

The general algorithm for the K-Move_Solver function is shown in Figure 8. The 

purpose of this algorithm is to the answer whether or not a problem has a solution in k 

moves, is it or is it not cooked, and does it have a solution in less than k moves. 

 

{has_solution, type } K-Move_Solver(OriginalProblem, k)  

// solves a k-mover 

1. NumOfPlies <- k*2-1 

2. For ( I = 1; I < NumOfPlies; I ! I + 2)  

2.1. {has, cooked} <- has_solution_in_k (OriginalProblem, I) 

2.2. if has = true then 

2.2.1. if cooked = true then 

2.2.1.1. return {true, in_less_than_k & cooked} 

2.2.2. else 

2.2.2.1.return {true, in_less_than_k & not_cooked} 

3. return has_solution_in_k (OriginalProblem, plies) 

 
Figure 8: The main algorithm for solving a k-mover 

 

K-Move_Solver uses an iterative deepening scheme to determine whether a problem has 

a solution in less than k moves. In line 1, the number of moves, k, is translated to the number 
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of plies k*2-1. In line 2, by calling to the function has_solution_in_k with parameters 1, 3, 5, 

� k, it is discovered if there is a solution and if it is, is it cooked or not. The information is 

stored in 2 variables, 'has_solution' and 'type'. In line 2.2.1, there is a check for the 

uniqueness of the solution. At this point, the algorithm returns whether the problem has a 

solution in less than k moves and whether it is cooked. 

If the cycle started at line 2 has survived all iterations, there is a possibility for a 

solution in k moves. In line 3, the algorithm checks this fact by another call to 

has_solution_in_k with the maximum available number of plies as a parameter. At his point, 

the return values depend completely on the return values by has_solution_in_k. 

The function has_solution_in_k is shown in Figure 9. It uses a stack for implementing 

Bounded DFS scheme and an algorithm on AND/OR trees (see 2.3.3). Each node on the 

graph can be solved, unsolved, or unknown. Solved nodes are those nodes for which we 

know that their subtree contains a solution. Unsolved nodes are those nodes for which we 

know that their subtrees does not contain a solution. Unknown nodes are those nodes for 

which we cannot say if they are solved or unsolved yet.  

At the beginning, all nodes are unknown. At the end of the algorithm, there are three 

possible situations: (1) the root node is marked as solved only once � there is a solution, (2) 

the root node is solved once then unsolved � there is a solution, and (3) the root node was 

marked twice as solved � there are two solutions, i.e. we have a dual (it is enough twice to 

detect a dual). 

The status of each expanded node is updated by UpdateNodesStatus. A node is declared 

as solved, if: (1) it is an AND node and Black is checkmated, (2) it is an AND node and all 

its sons (which are OR nodes) are selected as solved, and (3) it is an OR node and one of its 

sons (which is AND node) is solved.  
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{has_solution, is_cooked } has_solution_in_k (OriginalPosition, plies) 

// finds if a problem has or has not a solution and if it is cooked 

0. sol_found ! false 

1. PushIntoStack ({OriginalProblem, 0})      

      // 2nd parameter is for the node's level in the tree 

2. While   NotEmptyStack ( ) 

2.1. {CurrentPosition, Level}  !  PopFromStack() 

2.2. SolvedUnsolved (CurrentPosition, OriginalPosition)   

        // update the nodes' un/solved status 

2.3. If UnSolved (OriginalPosition) and sol_found = false return {false, false}  

        // no solution 

2.4. If UnSolved (OriginalPosition) and sol_ found = true return {true, false}  

        // only one solution 

2.5. If Solved (OriginalPosition) and sol_ found = true return {true, true}    

        // cooked 

2.6. If Solved (OriginalPosition) and sol_ found = false then 

2.6.1. Mark OriginalPosition as Unknown // canceling the solution 

2.6.2. sol_num! true 

2.7. If Level <= plies then 

2.7.1. For each Successor of CurrentPosition // from right to left 

2.7.1.1. CurrentPosition = GenerateSons (CurrentPosition) 

2.7.1.2. PushIntoStack ({CurrentPosition, Level + 1}) 

 

Figure 9: An algorithm for checking if a problem has a unique solution in k moves 

 

A node is declared as unsolved, if: (1) it is a node on the last level (which is AND 

node) and Black can move, (2) it is a stalemate situation, (3) White is checkmated (it can be 

only at OR node), (4) it is an OR node and all its sons are selected as unsolved, and (5) it is 

an AND node and one of its sons is selected as unsolved..  

Each expanded node is checked whether it is solved or unsolved and the appropriate 

changes are made in the stack in the function SolvedUnsolved according to the describtion 
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above. On each application of the function the root node can become solved or unsolved. In 

this case, we know whether there is a solution. 

In lines 2.4-2.7 there is a check if we solved the whole problem or, contrariwise, if the 

problem has no solution. The variable 'sol_found' is a flag, showing if during the search a 

solution was found. If it is found that the root node is unsolved and 'sol_found' has not been 

changed, the problem has no solution (line 2.4). If the variable was changed, it means that the 

problem has just one solution, i.e. it is not cooked (line 2.5). 

If the root node is solved and it is the second found solution ('sol_found' = true), then 

the problem is cooked (line 2.6). Finally, 'sol_found' is set to be true if we find a first solution 

(line 2.7). 

Figure 10 presents the recursive algorithm SolvedUnsolved which implements the ideas 

described above. Line number 1 takes care for the nodes that were checked as solved. The 

function receives 'CurrentPosition' node as a parameter. If it is solved, we may conclude that 

it is always an AND node because, for the first time, has_solution_in_k passes such a node as 

AND node, during the recursive calls the passed node is a grandfather of 'CurrentPosition'. 

has_solution_in_k declares a node as solved when Black got a checkmate at this node. 

If we have an AND node solved, we can immediately say that its father is solved too, 

because the father is an OR node. Therefore, all still uninvestigated brothers of the AND 

node can be pruned. It is done at line 1.1. The OR node is marked as solved at lines 1.2-1.3. 

At this point, it is possible that we solved the whole tree. Therefore, the appropriate test is 

done at line 1.4. 

The father of the OR node (white-to-move) is always an AND node (black-to-move). 

Therefore, all the OR node's brothers must be solved before we can mark the AND node as 

solved. The algorithm checks whether this condition is satisfied at line 1.4.1. At this point, 

we returned to the initial situation: the recursive call can be done. 
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SolvedUnsolved (CurrentPosition, OriginalPosition) 

// updates unknown nodes to be solved or unsolved 

1. If Solved (CurrentPosition) then //CurrentPosition is always an AND node at this point 

1.1. Remove from stack all CurrentPosition's brothers // pruning 

1.2. CurrentPosition ! CurrentPosition->father 

1.3. mark CurrentPosition as solved 

1.4. if UnSolved (OriginalPosition) then 

1.4.1. if CurrentPosition is the last solved brother 

1.4.1.1. mark CurrentPosition->father as solved 

1.4.1.2. SolvedUnsolved (CurrentPosition->father, OriginalPosition) 

2. elseif UnSolved (CurrentPosition) then 

2.1. if UnSolved (OriginalPositio) then 

2.1.1. if CurrentPosition is an OR node then 

2.1.1.1. Remove from stack all CurrentPosition's brothers // pruning 

2.1.1.2. CurrentPosition ! CurrentPosition->Father 

2.1.1.3. mark CurrentPosition as unsolved 

2.1.2. if CurrentPosition is the last unsolved brother 

2.1.2.1. mark CurrentPosition->father as unsolved 

2.1.2.2. SolvedUnsolved (CurrentPosition->father, OriginalPosition) 

Figure 10: Solved-unsolved recursive pruning procedure 

 

The situation with unsolved nodes is slightly different because SolvedUnsolved can 

receive the parameter 'CurrentPosition' as an OR node or an AND node. For this reason, 

there is an additional check at line 2.1.1. If it is an AND node, i.e. the situation is shifted, we 

just shift it back and we can continue with the cycles of the recursion. 
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Generally, while checking the effect of an unsolved node, we note that the events that 

take place are exactly the opposite of the solved node. For instance, if it is an unsolved OR 

node we can prune all its brothers. Otherwise, if it is an unsolved AND node we should wait 

while all its brothers become unsolved to declare its father as unsolved too. 

The algorithm KMoveMetric that applies the metric in Figure 6 is represented in Figure 

11. Starting this algorithm we already have the keymove and know that the problem is not 

cooked. If it is cooked, the -∞ is returned at line 2.1. In the second case, the function calls the 

recursive function RecKMoveMetric. 

First of all, RecKMoveMetric checks the stopping condition which is the number of 

plies to develop ('plies' is always odd). In the body of the function we calculate all parameters 

of the cluster. Particularly, we check for each response of White if it is a dual (line 4.1). If it 

is not, each position (except mate positions) reproduces another cluster. This is done by a 

recursive call (line 4.3.3). 

Let us denote the branching factor as b. Analyzing the complexity of the function 

shows that for the original position, in the worst case, there are nodes to find if the 

problem is cooked or not by has_solution_in_k. (The worse case can happen when all 

solution moves of White happen after we have observed all brother nodes in all clusters.) 

This is done at line 1 of KMoveMetric. Then, for each son of a Black node, we check again if 

it is dual in line 4.1 of RecKMoveMetric. This is the same check for being cooked as for 

original position but 2 plies deeper. There are b nodes which are the replies of Black to the 

keymove. For each such a node  nodes must be developed by has_solution_in_k to 

determine if there is a dual. Therefore, we have  in total.  

2 1( kO b − )

)

k −

2 3( kO b −

2 3 2 2* ( ) ( )kb O b O b− =
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1) KMoveMetric (OriginalPosition, k) 

// calculates the metric for a problem in k moves _k move metric−

1. PositionAfterKeymove ! GetPositionAfterKeymove (OriginalPosition) 

2. If PositionAfterKeymove = NULL then // in case of a cook or short solutions 

2.1. return -∞ 

3. Return (RecKMoveMetric (PositionAfterKeymove, 2*k-1) +  

    ( OriginalPosition, CurrentPosition) ) _ _change in pieces

 

2)  RecKMoveMetric (CurrentPosition, plies, Cluster's_level) // always black-to-move 

// recursively implements the proposed measuring metric for k-move problems. All variables 

// are the same as in the metric in Figure 6. 

1. If plies < 0 return 0 

2. Score ! 0 

3. BlackMoves ! GetAllBlackMoves (CurrentPosition) 

4. For all BlackPosition in BlackMoves 

4.1. {has_solution, is_dual } ! has_solution_in_k (BlackPosition, plies) 

4.2. If is_dual then 

4.2.1. duals_penalty ! relative_major_duals_coef*is_major + 

         relative_minor_duals_coef*is_minor 

4.2.2. Score ! Score � relative_duals_coef * plies // dual's level 

4.3. Else  

4.3.1. update #unique_variants and #all_non_dual_variants 

4.3.2. WhiteMoves ! GetAllWhiteMoves (BlackPosition) 

4.3.3. Score ! Score + RecKMoveMetric (Position, plies � 2, Cluster's_level + 1) 

4.3.4. Score ! Score + 

2_ _ * ' _ *# _
# _ _ _

relative claster coef cluster s level unique variants
all non dual variants

 

5. Return Score 

Figure 11: An algorithm for k-move metric calculation 
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For the second mate level, there are  Black nodes, because for each Black move 

after the keymove there are unique responses of White and b Black moves in response to 

each White move. There are  nodes in subtrees developed by has_solution_in_k of 

the second mate level in the worse case because subtrees start at level 5. Therefore, we have 

 nodes in total. In the same way, there are 

2b

2 5( kO b − )

52 2* ( )kb O b − 1 2 (2 1) 1( )k k kb O b− − − =  nodes to 

develop on the mate level k in the worse case. 

To determine duals, the algorithm checks in total in the worst case as follows: 

2 1 2 3 2 2 5 1 2 (2 1)

2 1 2 2 2 3 2 1

1* ( ) ( ) ( ) ... ( )
( ) ( ) ( ) ... ( ) ( )

k k k k k k

k k k k k

O b bO b b b b O b
O b O b O b O b O b

− − − − −

− − − −

+ + + +

+ + + + =

− =
 

 

The main advantage of this algorithm is its complete memory independence. In order to 

find all duals and use them in the metric calculations, we could store the whole solution tree 

and then to calculate. The worse case for storing the solution tree happens when on each step 

there are no duals for White because we can ignore subtrees of duals. Therefore, we have b 

moves of Black, 1 unique response of White, b responses of Black, and so on: 

2 2 3 1 1

1
2 2

_ 1 ...
2 ( ) 11 2 (1 ... ) 1 ( )

1

k k

k
k k

all nodes b b b b b b b
b bb b b b O b

b

− −

−
1− −

= + + + + + + + + =

−
+ + + + + = + =

−
 

There are  nodes to store in the worse case. In practice, it is impossible  even 

for relatively small k-s. 

1( kO b − )

The model for k-movers is only a skeleton for a future research. No themes were 

inserted into the metric yet. 
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Chapter 4

4. Experimental Results 

The experiments were carried out in two steps. The first step in our experiments was to 

work on the same set of 36 problems that was checked by ICP. For this purpose, the light 

version of Chess Composer was used. This version checks always to level 3. We call it DICP 

(Deep Improver of Chess Problems). Its algorithm is shown in Figure 1. Results are 

presented in section 4.1. The second step was tried using Chess Composer (the improved 

version) on the extended database of 100 problems (including the mentioned 36). Its 

algorithm is shown in Figure 2. Its results are shown in section 4.2. Four illustrative 

examples for problems improved by our models are presented in section 4.3. 

 

4.1. DICP 

DICP has been tested on the same 36 problems as ICP. Most of the problems were collected 

from relevant composition books and correspondences (Haymann, 1988-1991; Howard, 

1943; Howard, 1962; Howard, 1970; Harley, 1931). Each problem included at least one 

theme from the themes that have been defined in (HaCohen-Kerner et al., 1999). 

Table 3 presents the number of generated improvements by DICP for all 36 original 

problems. In average, for each problem 6, 429 and 29422 improvements were found on the 

first, second and third levels, respectively. Most of the improvements were found on the third 

level. Therefore, it is natural that the best improvement for each problem (if exists) will be 

found on the third level, as shown in Table 3. 
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# of problems 1-level 2-level 3-level total 

# of improvements 6 429 29382 29817 

Deviation (nodes) 9 701 50306 51006 

Generated 448 96066 12499298 12595812 

Deviation (nodes) 38 15651 2961155 2976844 

# of improvements / 
generated 

1.339% 0.447% 0.235% 0.237% 

  

Table 3:  Number of all generated improvements by DICP for the 36 original problems 

 

It is interesting to notice that the ratio of improved problems to generated problems  

decreases as more transformations are applied. Thus, 1.34% of the problems were selected as 

improved after one transformation. However, only 0.24% of the problems were selected as 

improved after three transformations. The general conclusion is that on lower levels we find 

more improvements in absolute numbers but with the fewer rates. 

Best improvement after exactly 
 

# of improved 

problems 1 transformation 2 transformations 3 transformations

# 10 8 2 0 
ICP 

% 100.0% 80.0% 20.0% 0.0% 

# 32 2 2  28 
DICP 

% 100.0% 6.2% 6.3%  87.5% 

 

Table 4:  Rate of improved problems in ICP and DICP (best improvement for each problem) 
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Table 4 presents the rate of improved problems in ICP and DICP (for each problem 

only the best improvement if found). While ICP improves only 10 out of 36 problems (about 

28%), DICP improves 32 out of 36 problems (about 89%). Most of the best improvements 

achieved by ICP occurred after only one transformation, and no problem has been improved 

by three transformations. In contrast, 87.5% of DICP's best improvements have been 

achieved after three transformations (see also Table 6 for statistics about the 

transformations). It supports the assumption that the addition of pieces improve the quality of 

the problems, e.g., by expressing more themes and bonuses. 

 Table 5 presents other interesting statistics concerning the performance of DICP.  The 

most clear finding is an average addition of 1.66 pieces (increases from 7.31 to 8.97, 22.7%) 

to each problem that have been improved. These additions have contributed to the following 

improvements:  

 

 # of 

pieces 

# of 

themes

# of unique    

thematic variants 

proportional rate of 

thematic variants 

(A) average for 

original problems 

7.31 2.25 1.69 0.43 

Deviation for A 0.96 0.69 1.01 0.31 

(B) average for 

improved problems

8.97 3.09 2.22 0.52 

Deviation for B 1.41 0.87 1.13 0.34 

Improvement rate 22.7% 37.4% 31.5% 21.6% 

 

Table 5:  Statistics concerning the performance of DICP for all 32 improved problems 
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(1) the average number of themes increases from 2.25 to 3.09 (37.4%) 

(2) the average number of unique thematic variants increases from 1.69 to 2.22 (31.5%) 

(3) the average proportional rate of the thematic variants increases from 0.43 to 0.52 

(21.6%) 

Table 6 presents the distribution of the improving transformations occurred in the best 

improvement which was found for each one of the 32 problems successfully improved by 

DICP. One clear finding is that the addition transformation is the most contributing 

transformation. The next contributing transformation is deletion and, eventually, 

transparency. 25 out of the 32 best improvements occurred with applying either one deletion 

with two additions (16 out of 32) or three additions (9 out of 32). 

 

 add del add-

add 

del-add-

add 

add-add-

add 

trans-add-

add 

trans-del-add

# of problems 1 1 2 16 9 2 1 

 

Table 6:  Distribution of improvement transformations 

 

 Figure 12 shows that most improved problems contain more pieces than the original 

problems. 30 problems out of 32 got additional pieces at their best improvements. This 

finding supports the hypothesis that adding more material improves the quality of the 

problems.  

Figure 13 shows that most new problems contain more themes. 66% of the problems 

got one or more new themes. 33% of the improvements are without adding themes. This is 

because our evaluation function (Appendixes B and C) gives bonuses for "good" pieces' 

placement, e.g. a keymoved piece moves longer than in an original problem. This finding 
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supports the hypothesis that adding more material to a certain extent increases the number of 

the themes included in the problems. 

Pieces on the board before and 
after improvement
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Figure 12: Improved problems as a function of the change in number of pieces 
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Figure 13: Improved problems as a function of the change in number of themes 
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Upon change in themes, intuitively, it is harder to add three themes to a problem than 

one. Figure 13 supports this intuition: 14 problems got 1 additional theme, 5 problems got 2, 

and just 1 problem got 3 additional themes. 

4.2. Chess Composer 

Chess Composer has been tested on 100 problems. Most of the problems were collected 

from relevant composition books and correspondences (Haymann, 1988-1991; Howard, 

1943; Howard, 1962; Howard, 1970; Harley, 1931; Thulin 2000, 2003, 2004; Török, 2001, 

2002; Godbout and Alain, 2001). The database includes the 36 problems used in ICP and in 

DICP. 

Figure 14 shows that the new transformed positions are usually not legal by chess rules 

(about 30%) or not legal by chess composition rules ("not 2-movers" � about 63%). In about 

7% of cases, the problems are legal, but they are of worse quality than the original problem. 

Finally, only 0.32% of the problems are considered as real improvements.  

improved
0.32% not legal 

by chess 
rules

29.76%

not 2-
mover

63.23%

score  less
6.69%

improved

not legal
by chess
rules
not 2-
mover

score
less

 
 

Figure 14: Distribution of transformed new positions for all levels 
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Figure 15 presents the total change in the scores (quality values) from the original 

problems to the best scored problems. While 37 original problems have a score less than 50, 

only 11 improved problems have such a score. While only 57 original problems have a score 

higher than 50, there are 87 improved problems that have such a score.  

The average score of the original problem was 49.62 ± 50.68. The average score of the 

best-scored improved problem is 94.93 ± 27.52. This interesting fact tells us that our 

evaluation function stabilizes problems in terms of scores. That is, taking a random problem 

with different range of scores, we bring them by the series of transformations to an "ideal" 

problem within the new range. 
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Figure 15: Change in scores 
 

Tables 1 and 7 show that the more nodes are developed, the more improvements were 

found. Our goal is to find the best improvements (if exist). The chance to find a better 

improvement grows with the number of generated nodes. However, the growth is not linear 

(see percentages in Table 7) - the deeper we look, the fewer improvements we find. The last 

result is similar to DICP's results (see Table 3). 
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# of problems # of improvements Total  

 1-level 2-level 3-level  

Average # of nodes 5 371 24356 24732 

Deviation (nodes) 7 554 39803 40364 

 improvements/nodes   per level  

improved/generated 1.52% 0.56% 0.32%  

 
Table 7:  Number of all improvements generated by Chess Composer for all 100 original 

problems 

It must be pointed that the quality of a new problem does not depend linearly on a 

number of applied transformations. A problem and its improvement presented in positions in 

Diagrams 1 and 2 (section 5.1) are the disproof. We got the position in Diagram 2 from 

position in Diagram 1 by three transformations. If we use only one or two transformations 

from this set of three, the positions are even not legal! 

 

0.02

0.50

0.09
0.01 0.01

0.62

1.44

0.88

0.41

0.67

0.43

0.24

0.76

1.31

0.51

0.24
0.23

0.10
0.03 0.020.02

0.50

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

gri
msh

aw

se
lfp

inn
ing

se
lfb

loc
kin

g

un
pin

nin
g

dir
ec

t b
att

ery

ind
ire

ct 
ba

tte
ry

tem
po

ha
lf-p

inn
ing

kin
g-

flig
hts

lon
ely

 ki
ng

pic
ka

nin
y

nu
m

be
r o

f t
he

m
at

ic
 v

ar
ia

nt
s

original
new

 
Figure 16: Average growing in themes 
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On average, each problem achieves additional thematic variants (Figure 16) or 

additional themes (Figure 17). Almost half of the problems (48) got significant improvement 

because additional themes were added (Figure 17). However, two problems got reduction in 

one theme. The explanation is that these problems contain thematic duals and triples which 

are regarded as penalties. In these cases, Chess Composes found new problems with no duals 

at the cost of decreasing in themes. 
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Figure 17: Almost half of the problems achieve additional themes 

 

Figure 18 shows that there is an increase in the number of pieces in 87 improved 

problems. Generally, due to the minimalism principle, the "dressing of the board" (an old 

technique of adding pieces for complication of a problem) reduces the quality of the problem 

in modern chess composition (Harley, 1931). However, despite this many meaningful 

improvements have been found.  

As shown in Table 3, a sequence of three transformations is the most frequent case. The 

same is right in the case of the best scored improvements (78 cases in Figure 19). However, 

in 41 problems just one piece was added (Figure 18). The explanation is as follows: Figure 
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16 shows that 45 improvements contain at least the following two transformations: "deletion 

of a piece" and "addition of a piece�. This sequence can represent either a "moving of a 

piece" or a "change of a piece to another piece", or a combination of the change and the 

moving, transformations applied in HaCohen-Kerner et al. (1999).  Another finding, shown 

in Figure 19, is that an addition of a piece is the most contributing transformation. 
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Figure 18: Number of improved problems as function of the change in pieces  at 

the best�scored problems 
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best scored problems via transformation
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Figure 19: Distribution of transformations  
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Figure 20: Run-time as a function of the number of pieces 

 

In Figure 20, we can see, as expected, that the time is decreasing as a function of the 

number of pieces at the initial position. This is because the more pieces are on the board, the 

less free squares left. Therefore, because on each free square about 10 types of pieces can be 
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added, the "addition" transformation gives less possibilities. The decreasing line is not 

straight because of the other component - the already mentioned rule of chess composition: 

there can be no more than 1 queen, 2 rooks, 2 bishops, 2 knights, 8 pawns, and 1 king for 

each color. Thus, as well as there are more pieces on the board, time needed to develop all 

positions becomes more problem depended. 

There are three problems that Chess Composer failed to improve even after four 

transformations. Three other problems have been improved slightly only after four 

transformations. These 4-transformation improvements did not add themes. All these six 

problems have several common features:  

(1) they include more than one theme for each problem,  

(2) there are neither duals, nor triples nor multiples,  

(3) every (or almost every) variant is thematic.  

In other words, these six original problems are either perfect or almost perfect. 

 

4.3. Illustrative Examples 

Below, four examples are presented. These four problems are taken from the database 

of 100 problems. Part of the problems has not been improved by ICP but only by the new 

models (DICP and the Chess Composer). One of the problems has been improved by ICP, 

but much better improvement was found by Chess Composer. 

4.3.1. Example 1 

The miniature (a problem that contains at most 7 pieces) presented in Diagram 1 has 

not been improved by ICP. However, it has been improved significantly by Chess Composer 

to the problem in Diagram 2 (see example 1 in Appendix E for the detailed analysis). The 

composition themes expressed in position 1 are: (1) �Grimshaw�, which means that two 
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Black pieces block each other�s line by interfering on a same square and by that cause 

different mate variations and (2) �Self-blocking�, which means that a Black piece blocks one 

of Black King's flights and by that creates different mate variations (Appendix C). 

The solution to the problem in Diagram 1 is the keymove Queen b5 � c4. There are 9 

possible variants; only 3 of them are thematic (full details in example 1 in Appendix E). 

The best improvement that has been found by Chess Composer contains the 3 

following transformations: �addition of a White pawn on e3�, �addition of a Black pawn on 

e4� and �addition of a Black rook on a7�. As a result, we reach the position in Diagram 2. 

  

Diagram 1: H. Weenink, Good Companion, 12/1917. Original Problem 

 

 

Diagram 2: The best improvement by Chess Composer 
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The solution to problem in Diagram 2 is the same - keymove Queen b5 � c4. Then, 

there are 12 possible variants; 5 of them are thematic (all these variants are presented at 

example 1 in Appendix E). 

The problem in Diagram 2 is considered better than the problem in Diagram 1 for the 

following three main reasons: 

1. The problem in Diagram 2 includes two pairs of the complex composition theme 

�Grimshaw� (i.e., 4 variants) instead of one pair (i.e., 2 variants) in the problem in 

Diagram 1. The two Grimshaw squares are c6 (the mutually interfering pieces are pawn 

and bishop) and b7 (rook and bishop). Problems that contain two pairs of the Grimshaw 

theme are relatively rare and hard to accomplish. Therefore, this addition is considered as 

a meaningful improvement of the original problem. 

2. The problem in Diagram 2 contains 5 thematic variants out of 12 (42%), while the 

problem in Diagram 1 contains only 3 thematic variants out of 9 (33%). 

3. Moreover, after making the keymove for the problem in Diagram 1, White has a mate-

threat 2. Queen c4:c7 (for notation see Appendix A). In the problem in Diagram 2, White 

has no mate-threat, yet succeeds in mating Black in two moves. This feature is called 

�tempo�, and it is also considered as an additional composition theme. Such problems are 

harder for human solution (Harley 1931). 

 
The added pawns in Diagram 2 are necessary for the solution. The Black pawn on e4 

prevents Black to make moves by its bishop to e4, f3, g2, and h1, moves that are not needed. 

The White pawn on e3 just keeps the Black pawn on e4 not moving. 

There is only one slight disadvantage in the problem in Diagram 2 comparing to the 

problem in Diagram 1. The original problem includes only 7 pieces (i.e., it is a miniature), 
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while the problem in Diagram 2 contains 10 pieces. The full evaluation of the improvement 

process is presented in example 1 in Appendix E. 

 

4.3.2. Example 2 

The second example is the original miniature presented in Diagram 3. The composition 

theme expressed in this problem is �self-blocking", which means that Black closes one of his 

king-flights by at least one of his moves, enabling White to mate him. 

 

 

Diagram 3: Unknown source 1. Original problem 

 

 The solution to the problem in Diagram 3 is as follows (example 2 in Appendix E). The 

keymove is Bishop a5 - d8. Then there are four variants, which can be derived from the four 

possible answers of the Black. Variant d) expresses the self-blocking theme: 

   Black’s move    White’s mate-move  Themes included in the variant 

a) 1... King   a4 - b5. 2. Bishop e6 - d7. 

b) 1... King   a4 - a3. 2. Rook   b5 - a5. 

c) 1... Pawn  a6 - a5.  2. Rook   b5 - a5. 
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d) 1... Pawn  a6 : b5.  2. Rook   c8 - a8.  self-blocking 

ICP, while trying to improve the position in Diagram 3, applies the following 

transformation �taking off the White bishop on a5". As a result, we reach the position in 

Diagram 4. The solution is as follows. The keymove is 1.Bishop e6 - d7. There are three 

possible variants then: 

   Black’s move White’s mate-move  Themes included in the variant 

a) 1... King   a4 - a3. 2. Rook   b5 - a5. 

b) 1... Pawn  a6 - a5.  2. Rook   b5 - b3.  self-blocking, direct-battery fired 

c) 1... Pawn  a6 : b5.  2. Rook   c8 - a8.  self-pinning 

 

Diagram 4: The best improvement by ICP for unknown source 1. 

 

The deletion of the White bishop on a5 leads to omission of the first variant for the 

problem Diagram 3. Therefore, the position in Diagram 4 has two main disadvantages in 

comparison to the one in Diagram 3: 

1. Loss of the nice mate achieved in the mentioned variant. 

2. Loss of the Black�s king-flight 1... King   a4 - b5 in the same variant. 

However, the problem in Diagram 4 is considered to be better than the problem in 

Diagram 3 for four main reasons: 
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1. The same composition theme (self-blocking) is expressed by a smaller problem (with one 

less bishop to White, the strongest side!). 

2. In contrast to the solution variants in the position in Diagram 3, all solution variants in 

the problem in Diagram 4 contain different mate-moves. That is, all variants are rather 

different and each of them contributes a novelty by its mate-move. 

3. In addition, we achieved two new composition themes in the problem in Diagram 4: (1) 

�self-pinning� (see Appendix C) in the third variant when the Black makes a move 1... 

Pawn a6 : b5 and pins his king; and (2) "direct battery" (see Appendix C)  in the second 

variant when the Black makes a move 1... Pawn  a6 - a5. and White mates with Bishop 

on d7 because of the move 2. Rook b5 - b3. 

4. Moreover, after making the keymove in the position in Diagram 3, White has a mate-

threat 2. Rook b5 - a5. White has no mate-threat in the position in Diagram 4. White still 

succeeds in mating Black in two moves. This feature is called �tempo�, which is also 

considered as an additional composition theme. 

 

 

Diagram 5: The best improvement by Chess Composer for unknown source 1 
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DICP and Chess Composer found a better improvement for the problem in Diagram 3 

(see Appendix E example 2 for full details). It applies the 3 following transformations: 

�taking off the White bishop on a5�, �addition of a White bishop on f8�, and �addition of a 

Black pawn on d6�. As a result, we reach the position in Diagram 5. The new solution is the 

same as to the problem in Diagram 4: the keymove is Bishop e6 - d7. Then, there are four 

possible variants then: 

Black’s move   White’s mate-move  Themes included in the variant 

a) 1... Pawn  d6 - d5. 2. Rook   b5 - d5.   direct battery fired 

b) 1... Pawn  a6 - a5.  2. Rook   b5 - b3.   self-blocking, direct battery fired 

c) 1... Pawn  a6 : b5.  2. Rook   c8 - a8.   self-pinning 

d) 1... King   a4 - a3. 2. Rook   b5 - a5.   self-pinning 

 

 The new problem is considered as much better than the problems in Diagrams 3 and 4. 

Above, there was a comparison between the problems in Diagrams 3 and 4. Now we shall 

compare between the problems in Diagrams 4 and 5. The problem in Diagram 5 has many 

advantages in comparison to the problem in Diagram 4, as follows: 

1. The problem in Diagram 5 has 4 different variants while the problem in Diagram 4 has 

just 3 variants. 

2. All variants in the problem in Diagram 5 are thematic (expressing themes) while the 

problem in Diagram 4 has one non-thematic variant. 

3. There are 2 variants that include the theme �self-pinning� and 2 variants that include the 

theme �direct battery fired� in the problem in Diagram 5. The problem in Diagram 4 has 

only one variant for each theme. 

4. The position in Diagram 4 has been achieved after only one transformation. The position 

in Diagram 5 has been achieved after 3 transformations (they can be regard as 2 because 
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the deletion of the White bishop and its addition on another square can be regarded as 

one moving transformation). 

There is only one disadvantage in the problem in Diagram 5 comparing with the 

problem in Diagram 4. The problem in Diagram 5 includes one White bishop more (which 

returns us to the original position in Diagram 3) and one additional Black pawn than the 

problem in Diagram 4. Therefore, the problem in Diagram 5 is not considered as a miniature 

(a problem which contains at most 7 pieces) any more. 

 
4.3.3. Example 3 

The next example is the miniature presented in Diagram 6. The composition themes 

expressed in this problem are: �Tempo/Waiting move�, �self-blocking� and �king flights� 

(Appendix C). The solution is the keymove 1.N e4 (example 3 in Appendix E). Then, there 

are 4 possible variants, only 3 of them express �self-blocking�, as follows. 

 

Diagram 6: Geoffrey Mott-Smith. The Chess Review, December, 1937.  

Appeared also in Howard (1962) - #122. Original problem 

 
   Black’s move  White’s mate-move  Themes included in the variant 

a) 1... Pawn  e7-e6.  2. Bishop d7 � c6.  self-blocking 

b) 1... Pawn  e7-e5.  2. Queen  c3 � d3.  self-blocking 
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c) 1... Pawn  e7-d6.  2. nKight  e4 � f6.  self-blocking 

d) 1... King  d5- e4.  2. Bishop d7 � c6. 

The other themes (tempo and king-flights) have no thematic variants due to their definition 

(see Appendix C). 

The problem presented in Diagram 6 has not been improved by ICP. However, it has 

been improved significantly by DICP and Chess Composer. The result is shown in Diagram 

7 (for full details see example 3 in Appendix E). The solution to the problem in Diagram 7 is 

the same. The keymove is 1. kNight f2 � e4. Then, there are 5 possible variants, 4 of them 

express an additional theme �pickaniny� which is considered as a rather complex theme. The 

�pickaniny� theme means that there are 4 different variants based on different moves of the 

same Black pawn and for each one of them there is another mate-move by White. The 5 

possible variants are: 

 

Diagram 7: The best improvement by Chess Composer 

    

Black’s move   White’s mate-move  Themes included in the variant 

a) 1... Pawn  e7-e6.  2. Bishop d7 � c6.  pickaniny, self-blocking 

b) 1... Pawn  e7-e5.  2. Queen  c3 � d3.  pickaniny, self-blocking 
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c) 1... Pawn  e7-d6.  2. King    g5 � f4.   pickaniny, self-blocking 

d) 1... Pawn  e7-f6.  2. nKight  g8 � f6.  pickaniny 

e) 1... King  d5- e4.  2. Bishop d7 � c6. 

 

 The problem in Diagram 7 is considered better than the problem in Diagram 6 for the 

following main reasons: 

1. The problem in Diagram 7 includes two new composition themes: �pickaniny� and �direct 

battery� (see Appendix C). 

2. In addition, the problem in Diagram 7 contains one variant where the mate move is done 

by White king, which is considered as a bonus. 

3. The problem in Diagram 7 contains one additional thematic variant. That is, this problem 

contains 4 variants out of 5 that are thematic (80%), while the problem in Diagram 6 

contains only 3 variants out of 4 that are thematic (75%). 

 

 There are two slight disadvantages in the problem in Diagram 7 comparing to the 

problem in Diagram 6: 

1. The problem in Diagram 6 includes only 7 pieces (i.e. it is regarded as a miniature), while 

the problem in Diagram 7 is not a miniature. 

2. The problem in Diagram 6 includes 3 variants that express the theme �self-blocking� 

while the problem in Diagram 7 includes only 2 variants that express this theme. 

 

4.3.4. Example 4 

The last example is the miniature presented in Diagram 8. The composition theme 

expressed in this problem is �self-blocking�. The solution to is the keymove 1.King c7  -  d8. 

There are 13 possible variants, only 4 of them express �self-blocking�. All 9 other variants 
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include the same mate-move and do not contribute any novelty (full details are given in 

example 4 in Appendix E). 

ICP, trying to improve the problem, applies the following rank-transparency 

transformation �moving all pieces 2 ranks below". As a result, we reach the problem in 

Diagram 9. The solution is the keymove 1. King c5 - d6. 

 

 

Diagram 8: Werner Speckmann, Neueste Kieler Nachricrten, 1939. Original problem 

 

 

Diagram 9: The best improvement by ICP 
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 The ICP's problem is considered better than the original problem for the two reasons: 

a) Black king in the problem in Diagram 9 is placed on a central square which is considered 

harder for White to mate. 

b) The new problem includes 11 possible variants (versus 13 in the original), 4 of them (as in 

the original problem) express �self-blocking�. Only 7 other variants (versus 9 in the 

original problem) do not contribute any novelty. The four thematic variants are: 

   Black’s move  White’s mate-move  Themes included in the variant 

a) 1... Pawn  d4-d3.  2. Rook  d5 � d4.  

         2. Rook  d5 � e5.   self-blocking; (thematic minor dual) 

b) 1... Rook  c3- f3.  2. Queen  f2 � d4.   self-blocking 

c) 1... Rook  c3- e3.  2. Queen  f2 � f5.   self-blocking 

d) 1... Rook  c3- d3.  2. Rook   d5 � e5.   self-blocking 

 

DICP and Chess Composer apply the 3 following transformations: "rank-transparency 

transformation by moving all pieces one rank below", "addition of a White bishop on b2", 

and �addition of a Black knight on c3� (see Appendix E example 4 for details). As a result, 

we reach the problem in Diagram 10. The solution for this problem is the same as for the 

problem in Diagram 8: the keymove 1.King c6 � d7. There are nine possible variants. Only 

four of them are thematic (i.e., express �self-blocking�), as follows: 
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Diagram 10: The best improvement by Chess Composer 

 

   Black’s move   White’s mate-move  Themes included in the variant 

a) 1... Pawn  d5-d4.   2. Rook   d6 � e6.   self-blocking 

b) 1... Rook  c4- f4.   2. Queen  f3 � d5.   self-blocking 

c) 1... Rook  c4- e4.   2. Queen  f3 � f6.   self-blocking 

d) 1... Rook  c4- d4.   2. Rook   d6 � e6.   self-blocking 

 

The problem in Diagram 10 is considered much better than the original in Diagram 8 

and than the ICP's improvement in Diagram 9. The comparison between the original problem 

and the ICP's improvement has already been presented. The comparison between the 

problems in Diagrams 9 and 10 is given below. The position in Diagram 10 has several 

advantages comparing to the problem in Diagram 9, as follows: 

a. While in the problem in Diagram 10 there are only 5 non-thematic variants, in the problem 

in Diagram 9 there are 7 non-thematic variants. 

b. One of the thematic variants in the problem in Diagram 9 has a serious disadvantage. It is 

a thematic minor dual (i.e., there are two possible mate-moves for White instead of one). 

In contrast, the problem in Diagram 10 contains only pure thematic variants. 
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 The only disadvantage of the problem in Diagram 10 comparing to the others is that the 

others include only 7 pieces (i.e. they are regarded as miniatures), while the problem in 

Diagram 10 is not a miniature. 
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Chapter 5

5. Summary and Future Research  

DICP and Chess Composer are two versions of our model for 2-movers. They present 

an ability to improve the quality to 87% and 97% to two sets of known chess 2-movers, 

respectively. Most of the improvements were achieved after various sequences of three 

transformations (mainly three additions or a deletion with two additions), while the most 

contributing transformation was "an addition of a piece". The successful sequences of 

transformations improved the quality of the problems by increasing the average number of 

themes, the average number of unique thematic variants, and the average proportional rate of 

the thematic variants. 

In the majority of improvements (87%) additional piece (pieces) was (were) added. As 

a result, problems got additional themes at 66% of the cases. For 6 problems there were no 

improvements after all possible sequences of three transformations, but for three of them 

there were slight improvements after a sequence of four transformations. 

Some of the improvements are rather impressive, considering that most of the tested 

problems were composed by experienced human composers. These new improved problems 

can be regarded as creative from the viewpoint of experts in chess composition because these 

problems are better and they are not too similar to the original problems. 

A general theoretical model, the k-move Chess Composer, was proposed. It uses the 

same algorithm as in Chess Composer for 2-movers. To detect whether or not a problem has 

a solution, the Depth First Search (DFS) with pruning on AND/OR trees is used. A special 

metric has been built in order to improve solution trees of k-movers. (A solution tree is a tree 

developed for all possible moves of Black and the right responses of White). This metric can 
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be used in a future evaluation function. Also, advanced programming such as Lisp and 

Prolog may be involved into implementation of the functions. 

The main disadvantage of our applications is their relative slow speed. We apply only 

sequences of three and sometimes four transformations. This is because we attempt to 

investigate all possible positions using a brute-force search method while working with a 

very large branching factor. Smart pruning of estimated as non contributing sub-trees may 

enable searching to deeper levels in order to find better and more complex improvements. 

The heuristic evaluation function is improvable too. For now, only 11 themes were 

applied. There are hundreds of those. Every theme can be seen as a pattern. The more such 

patterns are implemented in the model, the better evaluation function we get. The problem of 

complexity that arises can be decreased by recognizing similar patterns in the design phase. 

However, this problem is more domain-based. 

The ideas presented at the current model may be useful not only for orthodox chess. For 

example, a similar evaluation function can be built for: (1) non-orthodox chess, (2) chess-like 

games, like Tsume-Shogi, and (3) Checkers.  

A few ideas can be proposed for further research. One idea is to take an advantage of 

the probabilities that each kind of transformation has contributed until now. Then, we can 

develop only nodes with reasonable probabilities. As a result, we will search deeper in those 

sub-trees in which we have higher probabilities to find more and better improvements. 

Another idea is to use pruning methods. We can try to detect non-useful additions of 

pieces (e.g., adding of non-contributing pieces far away from the black king) and not add 

them. As a result, we will get a lower branching factor. Again, we will be able to search 

deeper and to find more and better improvements. 

In the area of composing k-movers, a quality function should take into consideration k-

move themes and suitable bonuses and penalties. Such a function is much harder defining 
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than for 2-movers. Even themes with the same name as in 2-movers must be defined for the 

whole solution tree. The fact that there are more plies in k-movers makes it more 

problematic. These themes, as in the case of 2-movers, should be collected from various 

chess composition books, such as Harley (1944) and Howard (1943). To improve our 

proposed K-move model, there is a need to apply it to real k-movers, while consulting chess 

compositions experts. 
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Appendix A -  The Game of Chess 

The purpose of this appendix is to describe chess and its rules. The game of chess has 

simple and well defined rules. The game takes place on a 64-square board. There are two 

players, White and Black. Each player has six types of pieces at the beginning: king, queen, 

rook, bishop, knight, and pawn (Table 8). At the beginning, each side has eight pawns, two 

bishops, two rooks, two knights, one king and one queen. The initial position is in Diagram 

11. 

 
 King queen rook bishop knight pawn 

White 

Black 

 

Table 8: The pieces in chess 

 

 

Diagram 11: The initial position 
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Diagram 12: King's moves 

 

Diagram 13: Knight's moves 

 

Diagram 12 shows all possible moves of the king. It can move only to neighbored 

squares. Knight's moves are observed in Diagram 13. Knight can jump over other pieces. 

Pawn's moves are shown in Diagram 14. On the vertical "c", the regular pawn's move is 

shown. On the vertical "f", there is a special pawn's move named "jump". It can happen on 

the second horizontal for White and on the seventh horizontal for Black. According to the 

rules, a pawn may jump if there is no piece between its current place and the square the pawn 

jumps to. In the example, the pawn jumps from f2 to f4. 

 

 

Diagram 14: Pawn's moves 

 

Diagram 15: Rook's moves 
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Diagrams 15, 16, and 17 present moves of sliding pieces. A rook may move in vertical 

and horizontal directions, as Diagram 15 shows. A bishop may move in diagonal directions 

(Diagram 16). Finally, a queen may move in all 8 directions, as Diagram 17 shows. 

 

 

Diagram 16: Bishop's moves 

 

Diagram 17: Queen's moves 

 

White and Black sliding pieces move the same. They cannot jump over other pieces as 

knights. 

White pawns move always towards the eight horizontal. Black's pawns move always 

towards the first horizontal. At the last horizontal (White at the eight and Black at the first), a 

pawn becomes a knight, a bishop, a rook, or a queen by a decision of the player. The name of 

this rule is "promotion".  

There is a restriction on all moves: all pieces may move only if the king of the color of 

the moved piece stay un-attacked. That is, no piece of the opposite site may move to the 

king's place. If a piece, other than a king, cannot move because of this rule, it is called 

"pinned". If a king cannot move, because it will be under attack, the attacked square is called 

"checked". Generally, a king under attack is called "checked". When it happens, the checked 

king's side must move and make the position without his king being checked. It is done either 
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by moving a king to a safe place, or by interfering with the checking piece, or by capturing 

the checking piece. 

 

 

Diagram 18: Castling 

 

A special move is castling (Diagram 18). Castling is a special interaction between a 

rook and a king of the same color. If neither the king nor the rook has moved from the 

beginning of the game, they can move simultaneously each one towards the other. There are 

2 kinds of castling, the king-side and the queen-side. In the first case, the king moves from 

vertical "e" to vertical "g" and the rook moves from vertical "h" to "f". In the second case, the 

verticals are "e" and "c" for king, and verticals "a" and "d" for rook. The horizontals are the 

first for White and the eight for Black. Squares "e1", "f1" and "g1" must stay un-attacked if 

White makes a king-side castling. Squares "e1", "d1" and "c1" must stay un-attacked if 

White makes a queen-side castling. For Black, the un-attacked squares are the same and the 

horizontal is eight. 

All pieces may capture an opposite piece. The capturing piece moves on the captured 

piece's place. The captured piece is removed from the board. Obviously, the captured piece is 

of the opposite color. The capturing side must stay his king un-attacked as in the case of 
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regular move. There is no jumping captures as in checkers. Capturing is not obligatory. A 

pawn captures on two nearest squares in the diagonal direction. For instance, the Black pawn 

on g3 may capture either the White bishop or the White knight (Diagram 19). A pawn may 

capture with promotion. For example, the White pawn on b7 (Diagram 19) may capture the 

Black rook on c8. There is no capturing while castling. 

 

 

Diagram 19: Pawn's captures 

 

A special capturing move is en-passant capture (Diagram 19). Here, both pieces, the 

rook and the king, move each one towards another. In case of White, if a Black pawn jumped 

from the seventh to the fifth horizontal, the White pawn may capture it on the next move. In 

case of Black, the en-passant horizontals are 2 and 4. For example, if the previous move was 

c2-c4 (Diagram 19), the next move of Black can be b4:c3, removing the White pawn on c4. 

Black, in this example, cannot capture the pawn on a4 because it did not jump on the 

previous move. If the last move of White were c3-c4, Black might not capture the White 

pawn on c4 too. 

In the regular chess game, White moves first, starting at initial position (Diagram 11). 

Black moves afterwards, and so on until one of three happens: 1) White mates Black; 2) 

Black mates White; 3) a draw happens. The first situation happens when Black king is under 
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attack, it is Black's turn, and there is no legal answer of Black. The second situation happens 

when White king is under attack, it is White's turn, and there is no legal answer of White. 

 The third situation happens when it is one of the sides' turn, it cannot move, and there 

is no check. This situation's name is "stalemate". Draw occurs also when it is impossible to 

give mate to one of the sides. It happens when: (1) only two kings left, (2) there are three 

pieces on the board, one of the pieces is a knight or a bishop. When a position happened 

three times during a game, it is also considered as a draw. 

We use capital letter for White's pieces and small letter for Black's pieces. Thus, "K" 

stands for "White king", "p" stands for "Black pawn", etc. "K", "Q", "R", "B", "N", and "P" 

are in use for king, queen, rook, bishop, knight, and pawn, respectively. 

In this thesis, we use the following algebraic notation. We use letters a � h for verticals 

and number 1 � 8 for horizontals. To show that a Black knight moves from d8 to c6 on the 

first move, we use minus "-", and write 1. � nd8 � c6. To show that a piece captures we use 

":". So, "a White bishop moves from c4 and captures a Black knight on f1 on the second 

move" is written as 2. Bc4:f1. We also use "+" to represent a check, "++" to represent a 

double check, and "×" to represent a checkmate. However, we sometimes do not put "×" 

when we discuss mate variants. 
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Appendix B - The ICP Heuristic Function 

Table 9 presents the 10 themes defined in ICP (HaCohen-Kerner et al., 1999). Models 

described in this thesis use new themes defined in Appendix C. The overall function is: 

qm =  
0   

( ) ( ) - ( )i j k
i j k

Severe deficiency
V T V B V P otherwise

⎧⎪
⎨ +∑ ∑ ∑⎪⎩

where the meaning is as follows. V is "value", T is "themes", B is "bonuses", and P is 

"penalties". 

Theme # Composition 
Theme Definition 

Value 
in 

Points 

1 Tempo or waiting 
move 

The keymove does not threat any mate 
move 10 

2 Direct battery 

A battery with a White piece in the middle 
of the battery where a battery is defined as 
follows: a piece is standing between a 
long-range piece (queen, rook or bishop) 
and a king 

15 

3 Indirect battery A battery to a square adjacent to the king's 
square 25 

4 King-flights The keymove creates free square/s that the 
Black king can escape to 15 

5 Lonely king The Black has only a king 2 

6 Half-pinning 
Two Black pieces standing between a 
White long-range piece (queen, rook or 
bishop) and a Black king 

25 

7 Self-pinning The Black makes a move and pins the 
Black king 15 

8 Unpin opponent 
piece 

The Black makes a move and unpins a 
White piece 20 

9 Self-blocking A Black piece blocks another Black piece 
creating different mate variations 25 

10 Grimshaw 
Two Black pieces, each of which  
blocks the other's line, and causes 
different mate variations 

45 

Table 9:  ICP's themes 
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Table 10 and Table 11 present bonuses and penalties used in ICP, respectively. The 

same bonuses and penalties were used in the models described at this thesis. 

 

Bonus # Feature Bonus in Points Chess Composer's update 
1 Miniature 10  
2 Meredith 5  

3 Black king is 
in the center 10  

4 X pieces on 
board 3*(18-X)  

5 Key by king 15  

6 Mate move by 
king 20 20 for the first unique mate, 4 for the 

rest 

7 

Key gives X 
more king 
flights to 
Black 

15*X 

 

8 

Key enables 
Black to 
check White 
X more times 

30*X 

30 for the first unique check, 6 for the 
rest (X-1) checks 

9 Key pins a 
White piece 3*piece's value  

10 Key unpins a 
Black piece 5*piece's value  

11 Key sacrifices 
a White piece 5*piece's value  

12 Mates' value 

of diff 210*(#   )
mate moves

# of variants
 

210*(# of unique thematic mate moves)
# of variants

3*(rest unique mates)
# of variants

+

 

Distance of 
the keymove 

 The distance is defined as a distance between 
start and end placement of the keymoved piece, 
as like it has been done by a queen (possibly in 
two moves). The formula is 3*(diagonal 
part)+2*(horizontal or vertical part) 

 
Distance 
to/from the 
Black king 

 The difference in distances, in terms of 14, 
between the Black king's square and start and 
end squares of the keymove (if the result is 
positive, it�s a bonus; otherwise, a penalty) 

Table 10: ICP's bonuses 
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Table 11: ICP's penalties 

Values of White and Black pieces are calculated due to Shannon's relative values for 

pieces (Shannon 1950) represented in Table 12. This values are suitable in chess composition 

too because relative strength or weakness of a particular piece takes a role too due to Harley 

(1931). However, there are other opinions about the values of pieces. For instance, Beal at al. 

(1997) built a system that was able to learn pieces value from a number of played games. The 

learned values varied as follows: pawn � 1 (other pieces are normalized to the pawn value), 

knight � 2.2 � 2.6, bishop � 2.8 � 3.2, rook � 4.0 � 4.4, and queen � 7.5 � 8.8. 

 queen rook bishop knight pawn 

White 

 
Black 9 5 3 3 1 

# of  penalty Feature Penalty in points 
1 X minor duals X 
2 X minor triples 2*X 
3 X minor multiples 3*X 
4 Black king is in the corner 20 
5 Black king is in the edge 10 
6 Key is a check 50 
7 Key is a double check 70 
8 Key is a capture of a Black piece 10*piece's value 

9 Key is a promotion of a pawn (unless 
it's the theme) 5*piece's value 

10 Key takes X king flights from Black 15*X 
11 Key pins a Black piece 5* piece's value 
12 Key unpins a White piece 3* piece's value 

13 If Value of White pieces > Value of 
Black pieces 

2* (Value of White 
pieces � Value of 
Black pieces) 

 

Table 12: Shannon's relative values for pieces 
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Appendix C - Definitions of New Themes 
Theme 1: "Tempo". Harley (1931) and Horward (1943) split all problems into two main 

groups, the tempo problems, and the threat problems. The tempo problems are those 

problems in which the keymove (see 2.2.1) does not threat any mate. The theme is 

called also the waiting move. The word "threat" means that White would mate Black if 

it would be White's move after the keymove. Threats are defined as an opposite of 

tempo problems. Double threat is two threats after the keymove. Finally, multi threat 

happens when there are more than two threats after the keymove. 

Theme 2: "King-flights". King-flights are squares where the Black king may escape. 

According to Howard (1943), problems in which the number of king-flights does not 

change after the keymove are harder to solve. Therefore, their quality is higher. 

Theme 3: "Direct battery". A battery is a placement of three pieces. One is the Black king. 

The second is a White piece which stands on the way between a White sliding piece 

and the Black king. Let us call the sliding piece to be the checking or firing piece, the 

second piece to be the middle piece. When the middle piece is moving, the checking 

piece "fires" and gives a check to the Black king. When it happens, the battery fired. Of 

course, a battery can be defined for the White king and Black pieces. This is not the 

case in the direct battery theme. In this thesis, direct battery happens when it is 

prepared before the mating move and it fires with the mating move. 

Theme 4: "Indirect battery". This theme is similar to direct battery. The difference is the 

fired square. It is never the Black king's square but one of the squares near the Black 

king. It is also important that the fired square is not attacked by the other piece of 

White. In the last case there is no importance for the firing piece.  

Theme 5: "Self-blocking". It happens when a Black piece moves and blocks possible flights 

of the Black king. White mates Black afterwards. The Black king could escape to the 
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blocked square if the Black piece was not there. If this is the case, than it is self-

blocking theme. 

Theme 6: "Self-pinning". As opposed to battery (see "direct battery" theme), in a pin, the 

middle piece is of the same color as the pinned king. If Black moved and pinned one of 

his pieces, this is potential self-pining. If there is a variant in which White mates and 

Black could prevent this mate by the pinned piece, than it is self-pining variant. 

Theme 7: "Half-pinning". This theme is built upon the self-pining theme. Potential half-pin 

is a pin with 2 middle pieces. If both middle pieces take part in different self-pinning 

variants with different mates, than it is half-pinning theme. 

Theme 8: "Unpinning". This theme happens when there is a Black piece which unpinnes a 

White piece. If the White piece mates, than it is an unpinning theme. The act of 

unpinning means that a piece moves and the opposite sliding piece can capture the 

unpinned piece. 

Theme 9: "Lonely king". It is an example of the almost no-theme theme. This happens 

when Black has only a single king. 

Theme 10: "Grimshaw". It is an example to a complex theme. In this theme, two Black 

pieces interfere with each other on the same square. The pieces are either sliding pieces 

(see Diagrams 4, 5, 6) or a jumping pawn. Therefore, by moving on the square they 

mutually prevent moves of each other. If this causes different mates, then it is the 

Grimshaw theme. Sometimes, if one of the Black pieces is a jumping pawn, than the 

theme is called Pickabish. 

Theme 11: "Pickaniny". It is a theme that is created if there are 4 variants for a Black pawn 

after the keymove, i.e. two captures, moving, and jumping, and each variant finishes 

with a different mate. This happens only on the seventh horizontal. 
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All lines of play that help to recognize themes (except 1 and 9) are called "thematic 

variants". Duals in thematic variants decrease the quality of the problem. Without any 

connection of being thematic or not, duals can be major or minor. In a minor dual, each dual 

variant is forced in other lines of play. A major dual is an opposite of a minor dual. 

All "pinning" themes have mirrored themes when pieces are of the mirrored color. 

There are hundreds and thousands of other themes as a fantasy of authors provides. After 

consulting the two international masters in chess composition that helped us, the following 

most common eleven themes was chosen. Table 13 shows the new scores (usually the same 

as in ICP). 

 

Themes # Composition Theme Value in Points 

1  Tempo or Waiting move 10 

2  Direct battery 15 

3  Indirect battery 25 

4  King-flights 15 

5  Lonely king 2 

6  Half-pinning 25 

7  Self-pinning  15 

8  Unpin opponent piece 20 

9  Self-blocking 25 

10  Grimshaw 45 

11  Pickaniny 25 

 
Table 13: Scores for the new definitions 

 

Notes:   

1) Only unique mates are counted. 

2) For the first unique thematic variant the full number of scores is given; for the rest, just 
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the fifth of the scores for the first variant is given. 

3) Pins-related themes may be defined for opposite color pieces (Harley, 1931; Howard, 

1943). However, the most frequent themes were defined in Table 13. 

4) Thematic variants are not threats after the keymove. 

5) Tempo, king-flights, and lonely king are special themes without thematic variants by 

definition (Harley, 1931; Howard, 1943).  
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Appendix D -  64-bit Representation 

Let us use the following common denotations for the variables that represent the chess 

board: 

 

WP � White Pawns BP � Black Pawns 

WN � White kNights BK � Black kNights 

WR � White Rooks BK � Black Rooks 

WB � White Bishops BB � Black Bishops 

WQ � White Queens BQ � Black Queens 

WK � White King BK � Black King 

 

 

 

 

Table 14: Primitives for the board representation 

 

Table 14 presents the primitives that are enough to store the whole position. Each 

square in the table presents a certain type of pieces: pawns, knights, rooks, bishops, queens 

and king of both colors. In our program, the relationship between the board squares and its 

bits is as follows: a1,...,h1,a2,...,a7,...,a8,...,h8, where a1 is msb (bit number 63) and h8 is lsb 

(bit number 0). There are 12 64-bits words. Surely, we need to care about special cases of 

castling and en-passant capturing. That is because we need to remember the last opposite 

pawn's move in case of en-passant and whether a king or a rook moved in case of castling.  

Using bitwise operations "|" (or) and "~" (not), we can immediately get 4 helpful 64-bit 

variables. These are "all White pieces", "all Black pieces", "all pieces", and "empty squares" 

(see Table 15). The rest helpful variables on Table 15 are pre-calculated 64-bits. "1" and "8" 

mean a 64-bit word in which bits are on the first and the eights horizontal respectively; bits 

are off on other horizontals. "a" and "h" are the same for verticals. By "~" before a number or 
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a letter "n", we mean another 64-bit word which is bitwise operation "not" on the "n" (also 

pre-calculated). 

 
AW = WP | WN | WR | WB | WQ | WK = all White pieces 

AB = BP | BN | BR | BB | BQ | BK = all Black pieces 

AP = AW | AB = all pieces 

NAP = ~AP = empty squares 

1 � first horizontal a � vertical a 

8 � eight horizontal h � vertical h 

~1 � all but first horizontal ~a � all but vertical a 

~8 � all but eight horizontal ~h � all but vertical h 

 

 

 

 

 

 

 

 

Table 15: Helpful variables 

 

Using primitives from Table 14 and helpful variables from Table 15 in addition to other 

bitwise operations "<<" (shift left), ">>" (shift right), "&" (and), we can easily get all pawns 

moves and captures (see Table 16). For example, all pawns' captures to the left, clPW, we get 

by ANDing all White pawns, WP, with the negotiation of the vertical "a", ~a, shifting the 

result one vertical left and ANDing again with all pieces of Black (see line 5 in the Table 16). 

We distinguish between "captures" and "regular" moves. This is because when a piece 

"captures", it influences the opposite side too. The promotion to the eight horizontal (or the 

first for Black) is also a special case. This is because 4 new positions (a pawn can be 

promoted to 4 other kinds of pieces) are created instead of one in regular move.  
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Pawns White Black 

Pawns' moves mPW = (WP >> 8) & NAP mPB = (BP << 8) & NAP 

Pawns moves, no 

promotion 

mPW~8 = mPW & ~8 mPB~1 = mPB & ~1 

Pawns jumps jPW = (mPW >> 8) & NAP jPB = (mPB << 8) & NAP 

Pawns captures to the left clPW = ((WP & ~a) >> 7) 

& AB 

clPB = ((BP & ~a) << 9) & 

AW 

Pawns captures to the 

right 

crPW = ((WP & ~h) >> 9) 

& AB 

crPB = ((BP & ~h) << 7) & 

AW 

Pawns captures to the 

left, no promotion 

clPW~8 = clPW & ~8 clPB~8 = clPB & ~1 

Pawns captures to the 

right, no promotion 

crPW~8 = crPW & ~8 crPB~8 = crPB & ~1 

Pawns moves, with 

promotion 

mPW+8 = mPW & 8 mPB+1 = mPB & 1 

Pawns captures to the left 

with promotion 

clPW+8 = clPW & 8 clPB+1 = clPB & 1 

Pawns captures to the 

right with promotion 

crPW+8 = crPW & 8 crPB+1 = crPB & 1 

enpassant Special case Special case 

Table 16: Pawns' moves and captures 

 

A different approach is used for knights and kings. To get all legal moves and captures 

we use masks, maskN for knights and maskK for kings (Table 17). The color in this case 

makes no difference. Masks are arrays of size 64 of 64-bits words. Each mask represents 

moves of a piece. A 64-bits word on index n of an array means all moves of the piece if it 

would be on the square n. 
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All knight's moves amWN = maskN[ λ (WN)] amBN = maskN[ λ  (BN)] 

Knight's moves mWN = amWN & NAP mBN = amBN & NAP 

Knight's captures cWN = amWN & AB cBN = amBN & AB 

All king's moves amWK = maskK[ λ (WK)] amBK = maskK[ λ  (BK)] 

King's moves mWK = amWK & NAP mBK = amBK & NAP 

King's moves cWK = amWK & AB cBK = amBK & AB 

 

Table 17: Use of masks for knights and kings 

 

To be able to use masks, we use a- λ (bitword) function ('bitword' is parameter) that 

returns the number of the least significant bit that is on. One of the possible implementations 

of λ  is using of look-up tables. However, on some platforms there is a faster way to 

calculate λ . For example, on Intel Pentiums and Amd64 processors there is a special 

instruction bsf which is faster than the use of look-up tables. The disadvantage of the look up 

tables is their memory space consuming. So, the whole table will not fit in the cache and thus 

the use of it can be potentially slow. On architectures without this special instruction the 

following code can be used instead of look up tables: 

typedef unsigned long long uINT64; 

typedef long long INT64; 

inline int λ  (const uINT64 a){ 

return (0==a)?64:ilogb(lsb_bit(a)); } 

 

Where lsb_bit is defined this way: 

 inline uINT64 lsb_bit(const uINT64 a){ 

 return a & -(INT64)a;  

} 
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The idea is simple: lsb_bit gives the nearest to the lsb bit which is on. The number 

which has just 1 bit on is a power of some number. So, we just find the binary logarithm. 

'ilogb' is a relatively fast function. 

Sliding pieces are carried out differently. The reason is the ability of existing of a 

piece on the way of sliding. So, in addition to pre-calculated masks in the sliding direction 

("rays" in Table 18), we need to cut all squares behind the blocking piece. The solution for 

down and up directions in case of White rooks is shown on Table 18. µ  is the number of the 

most significant bit that is on. Similar toλ , there are architectures with the special instruction 

bsr for µ .  For the architectures without it, the following code can be used: 

 inline int µ  (const uINT64 a){ 

        return (0==a)?64:ilogb(a); 

} 

 

 

 

 

 

 

Rooks For each White rook 

Masks dr = down_ray( λ (WR); ur = up_ray( λ (WR); 

rm = rankMoves[ λ (WR)][(char)(AP >> number of rank)] 

Moves down mR = dr & ((lsb_bit(dr & AP) << 1) � 1) 

Moves up mR |= ur ^ up_ray[ µ (ur & AP)] 

Moves left & right mR |= rm 

just moves jmR = mR & NAP 

just captures jcR = mR & AB 

Table 18: Moves and captures by sliding pieces via example of White rooks 
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For the left and right directions, the placement of a rook and all other pieces on the 

rook's horizontal determine all moves of the rook. So, we can pre-calculate all possible 

situations and to store them into 2-demantions array (rankMoves[64][256]) similar to Heinz 

(1997) and Hyatt (1999). In addition to left-right directions, they also pre-calculate all other 

three pairs of directions for all sliding pieces. In purpose to use these pre-calculations, Heinz 

and Hyatt use so-called rotated and flipped bitboards. The disadvantage of the method is 

managing of additional bitboards. We have no use of flipped and rotated bitboards.  

Black rooks are carried out the same as White rooks. We achieve bishops' moves and 

captures in the same way as for rook, but using 4 diagonal rays instead of vertical and 

horizontal. Queens are carried out the same as bishops and rooks together. 

Using the same technique as for queens in addition to knights we determine whether a 

king is still under attack and thus, the position is illegal. In this way, we cancel illegal 

positions fast. 

Using the same method, we check the "can�t castle" issue for 5 squares for each color: 

c1, d1, e1, f1, g1 for White and c8, d8, e8, f8, g8 for Black. In addition, we must remember if 

a castling king or a rook moved at the past. As in the case of en-passant capture, the cost is 

an addition of a word to the position structure (Table 14). 
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Appendix E - Results of the Improvement Processes 

Example 1   
Problem number is 4 

**************************** 

White: Kd8 Qb5 Bb3 Pf4             Black: kd6 ba8 pc7 

The keymove is: Qb5-c4 

ORIGINAL POSITION EVALUATION: 

THEMES: 

 threat: Qc4:c7  

 selfblocks:              3        score:  35 (price is 25 for the first variant, 5 for the rest) 

 grimshaw pairs:     1        score:  45 (price is 45 for each occurrence) 

 ---------------------------------- 

                 Total score for themes   :---> 80 

BONUSES: 

 position size:   miniature        score:  10 

 pieces on the board:     7        score:  33 (price is due to 3 * (18 - #pieces)) 

 *** different thematic mates: 3, different nonthematic mates: 2, variants:9 

  score:  10 (price is due to (10 * #diff thematic mates^2 + 3 * other diff mates) / #variants) 

 keymove distance:                         3 (price is due to horisontals & verticals 2, diagonals 3 ) 

 ---------------------------------- 

                 Total score for bonuses  :---> 56 

PENALTIES: 

 pieces value, white:13, black: 4  score:  18 (price is due to 2 * (whites - blacks)) 

 ---------------------------------- 

                 Total score for penalties:---> 18 

POSITION SCORE ..................................:--->118 

VARIANTS: 

1)  pc7-c6  Qc4-d4 X  self-blocking; grimshaw 

2)  pc7-c5  Qc4-e6 X  self-blocking 

3)  ba8-c6  Qc4-b4 X  self-blocking; grimshaw 

4)  ba8-d5  Qc4:d5 X 
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5-9)  ba8-any else Qc4:c7 X 

&&&&&&&&&&&& END OF POSITION EVALUATION &&&&&&&&&&&&& 

…….. 

IMPROVEMENT 20! by addition of P on e3, addition of p on e4, addition of r on a7. Score: 

118 -> 172, 45% 

White: Kd8 Qb5 Bb3 Pf4 Pe3        Black: kd6 ra7 ba8 pc7 pe4 

The keymove is: Qb5-c4 

IMPROVED POSITION EVALUATION: 

THEMES: 

 tempo (waiting)                   score:  10 (price is 10) 

 selfblocks:              3        score:  35 (price is 25 for the first variant, 5 for the rest) 

 grimshaw pairs:      2        score:  90 (price is 45 for each occurrence) 

 ---------------------------------- 

                 Total score for themes   :--->135 

BONUSES: 

 position size:   meredith         score:   5 

 pieces on the board:    10        score:  24 (price is due to 3 * (18 - #pieces)) 

 *** different thematic mates: 4, different nonthematic mates: 1, variants:12 

  score:  13 (price is due to (10 * #diff thematic mates^2 + 3 * other diff mates) / #variants) 

 keymove distance:                         3 (price is due to horisontals & verticals 2, diagonals 3 ) 

 ---------------------------------- 

                 Total score for bonuses  :---> 45 

PENALTIES: 

 pieces value, white:14, black:10  score:   8 (price is due to 2 * (whites - blacks)) 

 ---------------------------------- 

                 Total score for penalties:--->  8 

POSITION SCORE ..................................:--->172 

VARIANTS: 

1)  pc7-c6  Qc4-d4 X  self-blocking; grimshaw 

2)  pc7-c5  Qc4-e6 X  self-blocking 

3)  ba8-b7  Qc4:c7 X  grimshaw 

4)  ba8-c6  Qc4-b4 X  self-blocking; grimshaw 

5)  ba8-d5  Qc4:d5 X 
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6)  ra7-b7  Qc4-d5 X  grimshaw 

7-12)  ra7-any else Qc4:c7 X 

&&&&&&&&&&&&  END OF POSITION EVALUATION &&&&&&&&&&&& 

 

 

Example 2   
Problem number is 10 

**************************** 

White: Kc3 Rc8 Rb5 Be6 Ba5  Black: ka4 pa6 

The keymove is: Ba5-d8 

ORIGINAL POSITION EVALUATION: 

POSITION ANALYSIS: 

------------- 

THEMES: 

 threat: Rb5-a5  

 king-flights                      score:  15 (price is 15 for non-decreasing) 

 selfblocks:              1        score:  25 (price is 25 for the first variant, 5 for the rest) 

 ---------------------------------- 

                 Total score for themes   :---> 40 

BONUSES: 

 position size:   miniature        score:  10 

 pieces on the board:     7        score:  33 (price is due to 3 * (18 - #pieces)) 

 *** after keymove sacrificed pieces on squares: b5 

 sacrificed pieces:         1      score:   5 (price is due to 1 * sacrificed piece value) 

 *** different thematic mates: 1, different nonthematic mates: 2, variants:4 

   score:   4 (price is due to (10 * #diff thematic mates^2 + 3 * other diff mates) / #variants) 

 keymove distance:                         9 (price is due to horisontals & verticals 2, diagonals 3 ) 

 keymove to king distance:             9 (price is due to horisontals & verticals 2, diagonals 3 ) 

 ---------------------------------- 

                 Total score for bonuses  :---> 70 

PENALTIES: 

 black king is in the edge         score:  10 
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 pieces value, white:16, black: 1  score:  30 (price is due to 2 * (whites - blacks)) 

 ---------------------------------- 

                 Total score for penalties:---> 40 

POSITION SCORE ..................................:---> 70 

VARIANTS: 

------------- 

1)  pa6-a5  Rb5:a5 X 

2)  pa6:b5  Rc8-a8 X  self-blocking 

3)  ka4-a3  Rb5-a5 X 

4)  ka4:b5  Be6-d7 X 

&&&&&&&&&&&&&&  END OF POSITION ANALYSIS  &&&&&&&&&&&&&&& 

……… 

IMPROVEMENT 153! by deletion of B on a5, addition of B on f8, addition of p on d6. 

Score: from 70 to 100, 42% 

PIECES LOCATION IS: 

------------- 

White: Kc3 Rc8 Rb5 Bf8 Be6  Black: ka4 pd6 pa6 

The keymove is: Be6-d7 

IMPROVED POSITION EVALUATION: 

------------- 

THEMES: 

 tempo (waiting)                   score:  10 (price is 10) 

 direct battery uniquely fired:  2 times   

score:  18 (price is 15 for the first thematic variant, 3 for the rest) 

 unique selfpins:         2        score:  18 (price is 15 for the first variant, 3 for the rest) 

 selfblocks:              1        score:  25 (price is 25 for the first variant, 5 for the rest) 

 ---------------------------------- 

                 Total score for themes   :---> 71 

BONUSES: 

 position size:   meredith         score:   5 

 pieces on the board:     8        score:  30 (price is due to 3 * (18 - #pieces)) 

 *** after keymove sacrificed pieces on squares: b5 

 sacrificed pieces:         1      score:   5 (price is due to 1 * sacrificed piece value) 
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 *** different thematic mates: 4, different nonthematic mates: 0, variants:4 

  score:  40 (price is due to (10 * #diff thematic mates^2 + 3 * other diff mates) / #variants) 

 keymove distance:                         3 (price is due to horisontals & verticals 2, diagonals 3 ) 

 ---------------------------------- 

                 Total score for bonuses  :---> 83 

PENALTIES: 

 black king is in the edge         score:  10 

 *** king flights before the keymove were 2, after were 1 

 absent king flights:     1        score:  15 (price is due to 15 * #new king flights) 

 pieces value, white:16, black: 2  score:  28 (price is due to 2 * (whites - blacks)) 

 keymove to king distance:             1 (price is due to horisontals & verticals 2, diagonals 3 ) 

 ---------------------------------- 

                 Total score for penalties:---> 54 

POSITION SCORE ..................................:--->100 

VARIANTS: 

------------- 

1)  pd6-d5  Rb5:d5 X  direct battery fired 

2)  pa6-a5  Rb5-b3 X  self-blocking  direct battery fired 

3)  pa6:b5  Rc8-a8 X  self-pinning 

4)  ka4-a3  Rb5-a5 X  self-pinning 

&&&&&&&&&&&&&&  END OF POSITION ANALYSIS  &&&&&&&&&&&&&&& 

 

Example 3   
Problem number is 12 

**************************** 

White: Kg5 Qc3 Bd7 Nf2 Pd6  Black: kd5 pe7 

The keymove is: Nf2-e4 

ORIGINAL POSITION EVALUATION: 

THEMES: 

 tempo (waiting)   score:  10 (price is 10) 

 king-flights     score:  15 (price is 15 for non-decreasing) 

 selfblocks:   3  score:  35 (price is 25 for the first variant, 5 for the rest) 
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 ---------------------------------- 

                 Total score for themes   :---> 60 

BONUSES: 

 position size:   miniature score:  10 

 black king is in the center score:  10 

 pieces on the board:  7  score:  33 (price is due to 3 * (18 - #pieces)) 

 *** after keymove sacrificed pieces on squares: d6 e4 

 sacrificed pieces:  2  score:   4 (price is due to 1 * sacrificed piece value) 

 *** different thematic mates: 3, different nonthematic mates: 0, variants:4 

      score:  22 (price is due to (10 * #diff thematic mates^2 + 3 * other diff mates) / #variants) 

 keymove distance:  5 (price is due to horisontals & verticals 2, diagonals 3 ) 

 ---------------------------------- 

                 Total score for bonuses  :---> 84 

PENALTIES: 

 pieces value, white:16, black: 1  score:  30 (price is due to 2 * (whites - blacks)) 

 keymove to king distance:       5 (price is due to horisontals & verticals 2, diagonals 3 ) 

 ---------------------------------- 

                 Total score for penalties:---> 35 

POSITION SCORE ..................................:--->109 

VARIANTS: 

------------- 

1)  pe7-e6  Bd7-c6 X  self-blocking 

2)  pe7-e5  Qc3-d3 X  self-blocking 

3)  pe7:d6  Ne4-f6 X  self-blocking 

4)  kd5:e4  Bd7-c6 X 

&&&&&&&&&&&&&&&  END OF POSITION ANALYSIS  &&&&&&&&&&&&&& 

........ 

IMPROVEMENT 40! by addition of P on f6, addition of R on h5, addition of N on g8. 

Score: from 109 to 143, 31% 

White Kg5 Qc3 Rh5 Bd7 Ng8 Nf2 Pf6 Pd6  Black kd5 pe7 

The keymove is: Nf2-e4 

IMPROVED POSITION EVALUATION: 

------------- 
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THEMES: 

 tempo (waiting)           score:  10 (price is 10) 

 direct battery uniquely fired:    1 times  score:  15 (price is 15 for the first thematic variant, 

3 for the rest) 

 king-flights              score:  15 (price is 15 for non-decreasing) 

 selfblocks:   2    score:  30 (price is 25 for the first variant, 5 for the rest) 

 pickaniny pawns: 1    score:  25 (price is 25 for each occurrence) 

 ---------------------------------- 

                 Total score for themes   :---> 95 

BONUSES: 

 position size:   Meredith  score:   5 

 black king is in the center  score:  10 

 pieces on the board:    10   score:  24 (price is due to 3 * (18 - #pieces)) 

 mate move is by king:   20   score:  20 (price is 20 for the first variant, 4 for the rest) 

 *** after keymove sacrificed pieces on squares: d6 f6 e4 

 sacrificed pieces:      3  score:   5 (price is due to 1 * sacrificed piece value) 

 *** different thematic mates: 4, different nonthematic mates: 0, variants:5 

      score:  32 (price is due to (10 * #diff thematic mates^2 + 3 * other diff mates) / #variants) 

 keymove distance:     5 (price is due to horisontals & verticals 2, diagonals 3 ) 

 ---------------------------------- 

                 Total score for bonuses  :--->101 

PENALTIES: 

 pieces value, white:25, black: 1  score:  48 (price is due to 2 * (whites - blacks)) 

 keymove to king distance:          5 (price is due to horisontals & verticals 2, diagonals 3 ) 

 ---------------------------------- 

                 Total score for penalties:---> 53 

POSITION SCORE ..................................:--->143 

VARIANTS: 

------------- 

1)  pe7-e6  Bd7-c6 X  self-blocking  pickaniny 

2)  pe7-e5  Qc3-d3 X  self-blocking  pickaniny 

3)  pe7:d6  Kg5-f4 X  direct battery  pickaniny 

4)  pe7:f6  Ng8:f6 X  pickaniny 
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5)  kd5:e4  Bd7-c6 X 

&&&&&&&&&&&&&&&  END OF POSITION ANALYSIS  &&&&&&&&&&&&&& 

Example 4   
Problem number is 7 

**************************** 

White: Kc7 Qf4 Rd7 Black: ke6 rc5 pd6 pc6 

The keymove is: Kc7-d8 

ORIGINAL POSITION EVALUATION: 

THEMES: 

 threat: Rd7:d6  

 king-flights                      score:  15 (price is 15 for non-decreasing) 

 selfblocks:              3        score:  35 (price is 25 for the first variant, 5 for the rest) 

 ---------------------------------- 

                 Total score for themes   :---> 50 

BONUSES: 

 position size:   miniature        score:  10 

 pieces on the board:     7        score:  33 (price is due to 3 * (18 - #pieces)) 

 keymove is by king                score:  15 

 *** different thematic mates: 2, different nonthematic mates: 2, variants:14 

   score:   3 (price is due to (10 * #diff thematic mates^2 + 3 * other diff mates) / #variants) 

 keymove distance:                         3 (price is due to horisontals & verticals 2, diagonals 3 ) 

 ---------------------------------- 

                 Total score for bonuses  :---> 64 

PENALTIES: 

thematic not singles:1 score: 30 (price is 30 for each occurrence and cancellation of themes) 

 minor duals:             1        score:   2 (price is 2 for each occurrence) 

 pieces value, white:14, black: 7  score:  14 (price is due to 2 * (whites - blacks)) 

 ---------------------------------- 

                 Total score for penalties:---> 46 

POSITION SCORE ..................................:---> 68 

VARIANTS: 

------------- 
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1) pd6-d5  Rd7-e7 X  self-blocking 

     Rd7-d6 X  thematic minor dual 

2) rc5-h5  Rd7:d6 X 

3) rc5-g5  Rd7:d6 X 

4) rc5-f5  Qf4:d6 X  self-blocking 

5) rc5-e5  Qf4-f7 X  self-blocking 

6) rc5-d5  Rd7-e7 X  self-blocking 

7) rc5-b5  Rd7:d6 X 

8) rc5-a5  Rd7:d6 X 

9) rc5-c4  Rd7:d6 X 

10) rc5-c3  Rd7:d6 X 

11)  rc5-c2  Rd7:d6 X 

12)  rc5-c1  Rd7:d6 X 

13)  ke6-d5  Rd7:d6 X 

&&&&&&&&&&&&&  END OF POSITION ANALYSIS  &&&&&&&&&&&&&&&& 

…….. 

IMPROVEMENT 284! by central transparency on e5, addition of B on b2, addition of n on 

c3. Score: from 68 to 106, 55% 

White: Kc6 Qf3 Rd6 Bb2 Black: ke5 rc4 nc3 pd5 pc5 

The keymove is: Kc6-d7 

IMPROVED POSITION EVALUATION: 

THEMES: 

 threat: Rd6:d5  

 king-flights                      score:  15 (price is 15 for non-decreasing) 

 selfblocks:              4        score:  35 (price is 25 for the first variant, 5 for the rest) 

 ---------------------------------- 

                 Total score for themes   :---> 50 

BONUSES: 

 position size:   meredith         score:   5 

 black king is in the center       score:  10 

 pieces on the board:     9        score:  27 (price is due to 3 * (18 - #pieces)) 

 keymove is by king                score:  15 

 *** different thematic mates: 3, different nonthematic mates: 1, variants:9 
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  score:  10 (price is due to (10 * #diff thematic mates^2 + 3 * other diff mates) / #variants) 

 keymove distance:                         3 (price is due to horisontals & verticals 2, diagonals 3 ) 

 ---------------------------------- 

                 Total score for bonuses  :---> 70 

PENALTIES: 

 pieces value, white:17, black:10  score:  14 (price is due to 2 * (whites - blacks)) 

 ---------------------------------- 

                 Total score for penalties:---> 14 

POSITION SCORE ..................................:--->106 

 

VARIANTS: 

------------- 

1)  pd5-d4  Rd6-e6 X  self-blocking 

2)  rc4-h4  Rd6:d5 X 

3)  rc4-g4  Rd6:d5 X 

4)  rc4-f4  Qf3:d5 X  self-blocking 

5)  rc4-e4  Qf3-f6 X  self-blocking 

6)  rc4-d4  Rd6-e6 X  self-blocking 

7)  rc4-b4  Rd6:d5 X 

8)  rc4-a4  Rd6:d5 X 

9)  ke5-d4  Rd6:d5 X 

&&&&&&&&&&&&&&  END OF POSITION ANALYSIS  &&&&&&&&&&&&&&& 
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Appendix F -  Example of applying order on 

additions of White pieces 

Below, it is an example of code implementing an order on pieces. The explained in chapter 

3.2 order is Q (White queen) > R (White rook) > B (White bishop) > N (White knight) > P 

(White pawn) > q (Black queen) > r (Black rook) > b (Black bishop) > n (Black knight) > p 

(Black pawn). The purpose of the code below is to insert clearance into the question how the 

order on the pieces can be implemented. The order on the Black pieces is the same. 
 
int make_addition_of_white_transformations(const struct TRANS *prev_trans,     
  const bool chess_comp_rules, struct TRANS * goal_trans_positions) 
{  
 int created_pos = 0;  
 char order_addition_piece = prev_trans->order_addition_piece; 
 
 if(order_addition_piece <= en_white_queen_addition)  
 { 
  // white queen, rook, bishop, knight, pawn are added 
  created_pos += make_addition_transformations(prev_trans, 4, true,  

chess_comp_rules, goal_trans_positions + created_pos); 
   
  if(order_addition_piece <= en_white_rook_addition)  

{   
    // white rook, bishop, knight, pawn are added 
    created_pos += make_addition_transformations(prev_trans, 3, true, 
     chess_comp_rules, goal_trans_positions + created_pos);      

  
 if(order_addition_piece <= en_white_bishop_addition)  

    { 
     // white bishop, knight, pawn are added 
     created_pos += make_addition_transformations(prev_trans, 2,  
      true, chess_comp_rules, goal_trans_positions); 
      
     if(order_addition_piece <= en_white_knight_addition) 
     { 
      // white knight, pawn are added 
      created_pos += make_addition_transformations(prev_trans, 1,  
       true, chess_comp_rules, goal_trans_positions +      
       created_pos);  

 
if(order_addition_piece <= en_white_pawn_addition)  

      { 
       // white pawn is added 
       created_pos += make_addition_transformations(prev_trans,  
        0, true,chess_comp_rules, goal_trans_positions +  
        created_pos);  
      } 
     } 
    } 
   } 
  } 
  return created_pos; 
 } 
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